Results of CUORE-0 and Prospects of the CUORE Experiment

Kyungeun E. Lim (on behalf of the CUORE collaboration)

Aug. 26, 2014, Particles and Nuclei Interactional Conference, Hamburg, Germany
Hypothetical lepton number violating process

Observation of $0\nu\beta\beta$
- will establish that neutrinos are Majorana particles
- constrains on absolute ν mass
- may provide info on mass hierarchy

Experimental Signature

summed energy spectrum of final state e^-

Rule of Thumb

$T_{1/2}^{0\nu}$ sensitivity $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$

<table>
<thead>
<tr>
<th>a</th>
<th>isotopic abundance of source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>detection efficiency</td>
</tr>
<tr>
<td>M</td>
<td>total detector mass</td>
</tr>
<tr>
<td>b</td>
<td>background rate /mass/energy</td>
</tr>
<tr>
<td>t</td>
<td>exposure time</td>
</tr>
<tr>
<td>δE</td>
<td>energy resolution (spectral width)</td>
</tr>
</tbody>
</table>
^{130}Te is a good 0νββ source (high isotopic abundance, relatively high Q-value)

TeO_2 bolometer provides excellent energy resolution (0.2% at Q-value)
CUORE

Cryogenic Underground Observatory for Rare Events

- Search for $0\nu\beta\beta$ in ^{130}Te
- 741 kg of $^{\text{nat}}\text{Te}$, 206 kg of ^{130}Te
- 988 TeO_2 crystals ($5 \times 5 \times 5$ cm3) as an bolometric array, 19 Towers (13 floors × 4 crystals)
- 10 mK operation temperature
- Excellent energy resolution
- Located at LNGS (3650 m.w.e, $10^6 \mu$ reduction)
- Radiopure materials, surface background suppression, and clean tower assembly
- Complex cryogenic setup
- Also suitable for direct dark matter search
19 groups
(Italy, USA, China, France)

148 people
The CUORE $0\nu\beta\beta$ Search

CUORE: Phased $0\nu\beta\beta$ search Program

Cuoricino (2003-2008)

Achieved (2008)
$$\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 300 - 710 \text{ meV}$$

Projected (2015)
$$\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 204 - 533 \text{ meV}$$

CUORE-0 (2013-2015)

CUORE (2015-2020)

Projected (2020)
$$\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 51 - 133 \text{ meV}$$
Cuoricino to CUORE

- More bolometers (Self-shielding, more powerful single crystal hit requirement).
- Crystals with higher radiopurity.
- Improved copper surface treatment, less copper.
- Optimized tower assembly procedure.
- Radiopure materials + Roman lead shield ($< 4\text{mBq/kg }^{210}\text{Pb}$) for cryostat.
- Pulse tube refrigerator, cryogen free dilution unit (DU).
- Separated DU suspension from crystal tower suspension.

<table>
<thead>
<tr>
<th></th>
<th>Cuoricino</th>
<th>CUORE-0 (Phase I)</th>
<th>CUORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{130}I</td>
<td>11</td>
<td>11</td>
<td>206</td>
</tr>
<tr>
<td>Background [counts/(keV·kg·yr)] @ ROI</td>
<td>0.17</td>
<td>0.07^*</td>
<td>0.01</td>
</tr>
<tr>
<td>E resolution (FWHM) [keV] @ 2615 keV</td>
<td>~ 6</td>
<td>5.7^*</td>
<td>5</td>
</tr>
</tbody>
</table>

* Phase II data analysis shows lower values
The first CUORE-like tower hosted in old Cuoricino cryostat.
- 52 (13 x 4) crystals, 39 kg of TeO$_2$ (11 kg of 130Te), 4 kg of copper structure.
- Validated new cleaning and assembly procedures for CUORE.
- Taking 0νββ data since Mar. 2013.
- First results (Phase I data analysis) were released in Sep 2013.

- Phase II data w/ improved detector operation condition ongoing.
Total ^{232}Th activity of 100 Bq
- CUORE goal of ~ 5 keV FWHM near ROI was achieved w/ improved detector operating condition.
CUORE-0: Background

CUORE-0 Preliminary
Exposure: 18.1 kg \cdot yr

\[Q_{\beta\beta} = 2528 \text{ keV} \]

<table>
<thead>
<tr>
<th>Event Rate [counts/keV/kg/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Tl</td>
</tr>
<tr>
<td>190Pt</td>
</tr>
<tr>
<td>210Po</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy [keV]</th>
<th>Event Rate [counts/keV/kg/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td></td>
</tr>
</tbody>
</table>

CUORE-0 Preliminary Avg. flat bkg. [counts/(keV \cdot kg \cdot yr)]

<table>
<thead>
<tr>
<th></th>
<th>Avg. flat bkg. [counts/(keV \cdot kg \cdot yr)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0\nu\beta\beta region (\alpha + \gamma/\beta)</td>
</tr>
<tr>
<td>Cuoricino (\varepsilon=83%)</td>
<td>0.153 ± 0.006</td>
</tr>
<tr>
<td>CUORE-0 (\varepsilon=78 %)</td>
<td>0.063 ± 0.006</td>
</tr>
<tr>
<td>Reduction factor</td>
<td>2</td>
</tr>
<tr>
<td>Due to</td>
<td>Better Radon control (</td>
</tr>
</tbody>
</table>

Consistent w/ Cuoricino background model
CUORE-0: Sensitivity

Assumptions: \(~ 5.2~\text{keV FWHM ROI resolution (}\delta E)\) and background rate \((b)\) of \(0.063 \pm 0.006~\text{counts/(keV·kg yr)}\) from the measurements.

Expected to surpass Cuoricino limit w/ about a year of live time.
CUORE-0 demonstrated that the background mitigation was successful.

CUORE MC for Bkg prediction using the results of CUORE-0 along with other screening campaign results as input shows the CUORE Bkg goal is within reach.

CUORE Preliminary

- **Near Surfaces**:
 - TeO₂
 - Cu NOSV or PTFE
- **Near Bulk**:
 - TeO₂
 - Cu NOSV
 - Cu NOSV
- **Cosm. Activ.**:
 - TeO₂
- **Cosm Activ.**:
 - Cu NOSV
- **Near Bulk**:
 - small parts
- **Far Bulk**:
 - COMETA Pb top
 - Inner Roman Pb
 - Steel parts
 - Cu OFE
- **Environmental**:
 - muons
 - neutrons
 - gammas

Bkg GOAL: 0.01 c/keV/kg/y

Conservative extrapolation from the CUORE-0 region measurements assuming all background is from $^{238}\text{U}/^{232}\text{Th}/^{210}\text{Pb}$ individually.
CUORE: Sensitivity

- 1σ sensitivity $T_{1/2}^{0\nu\beta\beta} = 1.6 \times 10^{26} \text{ yr} \ (9.5 \times 10^{25} \text{ yr @ 90\% C.L.})$
- Effective Majorana mass $47 - 100 \text{ meV} \ (51 - 133 \text{ meV @ 90\% C.L.})$
 - Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/(keV \cdot kg \cdot yr)
 - 5 years of live time.

arXiv:1109.0494
Status of CUORE: Detector

Assembly of all 19 towers is complete!
CUORE Cryogenic System

Detector: ~ 1 ton
Pb shields: ~ 10 tons
Cu shields/flanges: ~ 8 tons

Main Support Plate

Calibration System
Motion Box

Hoist System (Winch)

Y-Beam

3.1 m

1.7 m

Detector Suspension

Dilution Unit

Pulse Tube Refrigerator (5)

Cold Lead Plate (Top)

Cold Roman Lead (Side)

Detector

300 K

40 K

4 K

600 mK

50 mK

10 mK
Phased commissioning
- Adding complexity at each phase

Phase I: 4K system check
- Outer/Inner vacuum chamber test
- Cryogenic verification of detector calibration system
- Commissioning test of DU

Phase II: full cryostat vessel check
- Full assembly of cryostat
- Cool down of cryostat (ongoing)
- Integration of test tower, other subsystem

Completion is expected in 2015
Status of CUORE: Cryogenics
Status of CUORE: Cryogenics
Status of CUORE: Cryogenics

Mockup vessel

10 mK

300 K vessel

Super Insulation
Isotopic enrichment.

Particle discrimination by simultaneously measuring heat/light.
Isotopic enrichment.

Particle discrimination by simultaneously measuring heat/light.
Summary

- CUORE-0, the first CUORE-like tower is operated as a stand alone $0\nu\beta\beta$ search experiment at LNGS since March 2013.
- CUORE-0 demonstrates successful background mitigation and confirms the Cuoricino background model. It also demonstrates that 5 keV FWHM ROI energy resolution goal of CUORE is achievable.
- CUORE tower assembly is complete and cryogenic system commissioning is underway.
- Detector array deployment is expected in 2015.
- Low background and large mass of CUORE extend the physics reach of CUORE to other rare event searches such as direct dark matter and rare nuclear decays.
- Various R&D effort is ongoing for $0\nu\beta\beta$ search beyond CUORE.