

Sensitivity and Physics Reach of CUORE

CUORE tower array

CUORE

- The Cryogenic Underground Observatory for Rare Events (CUORE) will search for $0\nu\beta\beta$ in ¹³⁰Te.
- 988 TeO₂ crystals as both the $0\nu\beta\beta$ sources and as bolometric detectors, with 206 kg of 130 Te mass.
- CUORE is also suitable for the direct dark matter search due to its low background and significant target mass.
- CUORE-0, the first tower from the CUORE assembly line, is operating as a standalone experiment and has been taking data since March 2013.
- The CUORE experiment is currently in the advanced stages of detector construction and scheduled to take data in 2015, with \sim 5 years of expected data taking.
- Both CUORE and CUORE-0 are located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The average rock coverage of 1.4 km (3600 m.w.e) provides a factor of 10^6 reduction of the surface muon flux.

LNGS

TeO₂ Bolometers for $0\nu\beta\beta$ Search

CUORE Detector

- 130 Te has relatively high Q-value of 2528 keV.
- 130 Te also has high natural isotopic abundance at 34.2% and enrichment of TeO_2 is not required.
- TeO_2 bolometers, which measure energy through a rise in the temperature of the detector, provide excellent energy resolution (0.2% at Q-value).
- Excelletn energy resolution of the detector helps identify the signal and suppresses intrinsic background from $2\nu\beta\beta$.

Bolometric Detectors

Gluing of NTD

Wiring of NTD

Tower with a bonding machine

- CUORE consists of 19 towers, each tower is composed of 13 planes of four $5 \times 5 \times 5$ cm³ TeO₂ crystals, mounted in a frame made of copper.
- Radiopure TeO₂ crystals are produced in collaboration with Shanghai Institute of Ceramics, Chinese Academy of Science and transported to LNGS by ground and sea transportation to minimize cosmogenic activation.
- Each crystal is instrumented with one neutron transmutation doped (NTD) Ge thermistor and one silicon Joule heater.
- Bolometer operating temperature is 10 mK.
- The detector assembly procedure is performed in a cleanroom environment.
- Flexible printed circuit board copper traces were bonded to the thermistors and heaters using $25 \ \mu m$ diameter gold wires.

Kyungeun E. Lim* for the CUORE collaboration

Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520, USA

Cryogenics and Calibration System

CUORE hut

Schematic of a bolometer

CUORE cryostat

Shields

Ancient Roman lead discovered by a scuber diver

External neutron shield $(PE + H_3BO_3)$

Electronics, Data Acquisition, and Analysis Software

- The bolometer signals are amplified and then filtered with six-pole Bessel low-pass filters.
- The signals are digitized by National Instruments 18-bit digitizers with a 125 S/s sampling rate.
- DAQ software package designed to read signals from ~ 1000 bolometers will digitize the analog waveforms, run trigger algorithms, and store data for offline analysis.
- Continuous data collection and off-line triggering allow for multiple physics analyses by applying different energy thresholds in software.
- Raw data will be processed with C++ based software framework for the analysis.

Prospects of CUORE

Test installation and cooldown

External γ -ray shield (Lead)

Background Budget

CUORE P	reliminary	
Near Surfaces	: TeO ₂	////
Near Surfaces:	Cu NOSV or PTFE	
Near Bulk:	TeO ₂	
Near Bulk:	Cu NOSV	
Cosm. Activ. :	TeO ₂	
Cosm Activ :	Cu NOSV	
Near Bulk :	small parts	
Far Bulk:	COMETA Pb top	
Far Bulk:	Inner Roman Pb	
Far Bulk:	Steel parts	
Far Bulk:	Cu OFE	
Environmental	muons	
Environmental	neutrons	F
Environmental	gammas	
	0.01	

- The CUORE background goal is 0.01 events/ $(kg \times keV \times yr)$.
- search for dark matter with CUORE.

Sensitivity to $0\nu\beta\beta$

Projected 90% C.L. half-life sensitivity

- tion, and 5 years of live time, we expect a 90% C.L. sensitivity of :
- $T_{1/2}^{0\nu} = 9.5 \times 10^{25} \text{ y} (\langle m_{\beta\beta} \rangle = 0.05 0.13 \text{ eV}).$

Dark Matter Perspective

is sensitive to the regions allowed by DAMA, CoGeNT, and CRESST.

• CUORE-0 experiment demonstrated that surface background mitigation was successful.

• In addition, the low background rate allows for a precise measurement of the $2\nu\beta\beta$ half-life and a

• CUORE-0 is expected to surpass Cuoricino upper limit of 2.8×10^{24} yr in 1 year of live time. • With a background rate of 0.01 events/(kg \times keV \times yr), 5 keV FWHM region of interest resolu-

• With 3 keV energy threshold for all detectors, the same background rate measured from the CUORE Crystal Validation Run II in the region of interest, and 5 years of live time, CUORE