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What we know about Neutrinos
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What we don’t know about Neutrinos
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Outline

 CUORE :  An array of  TeO2 bolometers

 CUORE-0 :  0νββ search w/ a single CUORE tower

 Summary

 Neutrinoless double-beta decay (0νββ) search

 CUORE-0 : Detector
 CUORE-0 : Performance and Background
 CUORE-0 : Results
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Neutrino(less) double-beta decay

Observation of 0νββ 
1. will establish that neutrinos are Majorana Particles (         )
2. demonstrate lepton number is not a symmetry of nature
3. will provide indirect info about the ν mass  
4. may provide info about the mass hierarchy in combination with 

direct neutrino mass measurement € 

ν = ν 

0νββ

- Beyond SM
- Hypothetical process only if           and mν > 0
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- Allowed in SM
- Observed in several nuclei   
  (T1/2 2ν ~ 1018-1021 yr) 
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- Beyond SM
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ν = ν 

2νββ 

- Allowed in SM
- Observed in several nuclei   
  (T1/2 2ν ~ 1018-1021 yr) 

48Ca, 150Nd, 96Zr, 
100Mo, 82Se, 
116Cd, 130Te, 
136Xe, 76Ge 
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Signature of 0νββ

dramatic progress in our ability to compensate for high-
momentum physics that is cut out !see, e.g., Bogner et al.
"2003#$, but reliably correcting for low energy excitations
such as core polarization is a longstanding problem. Par-
tial summation of diagrams, a tool of traditional
effective-interaction theory, is helpful but apparently not
foolproof.

In the long term these issues will be solved. As al-
ready mentioned, the coupled-cluster approximation, an
expansion with controlled behavior, is being applied in
nuclei as heavy as 40Ca. With enough work on three- and
higher-body forces, on center-of-mass motion, and on
higher-order clusters, we should be able to handle 76Ge.
The time it will take is certainly not short, but may be
less than the time it will take for experimentalists to see
neutrinoless double beta decay, even if neutrinos are in-
deed Majorana particles and the inverted hierarchy is
realized. And the pace of theoretical work will increase
dramatically if the decay is seen. Observations in more
than one isotope will only make things better. Our opin-
ion is that the uncertainty in the nuclear matrix elements
in no way reduces the attractiveness of double beta de-
cay experiments. Given enough motivation, theorists are
capable of more than current work seems to imply.

VI. EXPERIMENTAL ASPECTS

A. Background and experimental design

Double beta decay experiments are searching for a
rare peak "see Fig. 5# upon a continuum of background.
Observing this small peak and demonstrating that it is
truly !!"0"# is a challenging experimental design task.
The characteristics that make an ideal !!"0"# experi-
ment have been discussed "Elliott and Vogel, 2002; Zde-
senko 2002; Elliott, 2003#. Although no detector design
has been able to incorporate all desired characteristics,
each includes many of them. "Section VII.C describes
the various experiments.# Here we list the desirable fea-
tures:

• The detector mass should initially be large enough to
cover the degenerate mass region "100–200 kg of iso-

tope# and be scalable to reach the inverted-hierarchy
scale region "%1 ton of isotope#.

• The !!"0"# source must be extremely low in radio-
active contamination.

• The proposal must be based on a demonstrated tech-
nology for the detection of !!.

• A small detector volume minimizes internal back-
grounds, which scale with the detector volume. It
also minimizes external backgrounds by minimizing
the shield volume for a given stopping power. A
small volume is easiest with an apparatus whose
source is also the detector. Alternatively, a very large
source may have some advantage due to self-
shielding of a fiducial volume.

• Though expensive, the enrichment process usually
provides a good level of purification and also results
in a "usually# much smaller detector.

• Good energy resolution is required to prevent the
tail of the !!"2"# spectrum from extending into the
!!"0"# region of interest. It also increases the signal-
to-noise ratio, reducing the background in the region
of interest. Two-neutrino double beta decay as back-
ground was analyzed by Elliott and Vogel "2002#.

• Ease of operation is required because these experi-
ments usually operate in remote locations and for
extended periods.

• A large Q!! usually leads to a fast !!"0"# rate and
also places the region of interest above many poten-
tial backgrounds.

• A relatively slow !!"2"# rate also helps control this
background.

• Identifying the daughter in coincidence with the !!
decay energy eliminates most potential backgrounds
except !!"2"#.

• Event reconstruction, providing kinematic data such
as opening angles and individual electron energies,
can reduce background. These data might also help
distinguish light- and heavy-particle exchange if a
statistical sample of !!"0"# events is obtained.

• Good spatial resolution and timing information can
help reject background processes.

• The nuclear theory is better understood in some iso-
topes than others. The interpretation of limits or sig-
nals might be easier for some isotopes.

Historically, most !! experiments have faced U and
Th decay-chain isotopes as their limiting background
component. A continuum spectrum arising from
Compton-scattered # rays, ! rays "sometimes in coinci-
dence with internal conversion electrons#, and $ par-
ticles from the naturally occurring decay chains can
overwhelm any hoped for peak from the !!"0"# signal.
This continuum is always present because U and Th are
present as contaminants in all materials. The level of
contamination, however, varies from material to mate-

FIG. 5. The distribution of the sum of electron energies for
!!"2"# "dotted curve# and !!"0"# "solid curve#. The curves
were drawn assuming that %0" is 1% of %2" and for a 1−&
energy resolution of 2%.

496 Avignone, Elliott, and Engel: Double beta decay, Majorana neutrinos, and …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008

2νββ

0νββ

( Assumes BR 0ν/2ν = 1% and 
detector energy resolution is 2%)

ββ summed e- energy spectrum

Look for peak in the detector at the Q-value of decay.
Good energy resolution of a detector suppresses intrinsic 
background from 2νββ. 
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a isotopic abundance of source

ε detection efficiency 

M total detector mass

b background rate /mass/energy 

t exposure time
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Search for 0νββ
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SNO+ 

Under constru
ction

SuperNEMO 
Under construction

KamLAND-Zen 

Data Taking

EXO

Data Taking

CANDLES

Complete

CUORE
Under construction

GERDAData Taking

Majorana

Under constru
ction

NEXTUnder construction

Search for 0νββ

 L. Winslow,  APS 2015
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Search for 0νββ: 136Xe

T1/2 > 1.1×1025 years T1/2 > 1.9×1025 years 

KamLAND-Zen EXO-200

Nature 510 (2014) 229–234
Phys.Rev.Lett. 111 (2013) 122503
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Search for 0νββ: 76Ge

GERDA 

Combined 76Ge T1/2 > 3.0×1025 years 

Phys.Rev.Lett. 110 (2013) 062502
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TeO2 Bolometers

Measure energy 
deposition through 
temperature rise.
Provides excellent 
energy resolution.
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 Neutrinoless double-beta decay (0νββ) search

 CUORE :  An array of  TeO2 bolometers

Outline

 CUORE-0 :  0νββ search w/ a single CUORE tower

 Summary

 CUORE-0 : Detector
 CUORE-0 : Resolution and Background
 CUORE-0 : Results
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CUORE-0
(2013-2015)Cuoricino

(2003-2008)

CUORE
(2015-2020)

Achieved (2008) Achieved (2015) Projected (2020)

The CUORE 0νββ Search

Theoretical Aspects Bolometers CUORICINO The CUORE Experiment

CUORE Program

CUORICINO

2003 - 2008

CUORE-0

2011 - 2014

CUORE

2013 - 2018

Andrea Giachero (Andrea.Giachero@mib.infn.it) The status of the CUORE experiment NPA5 2011 , April 5th, 2011 8 / 22

CUORE: Cryogenic 
Underground Observatory 

for Rare Events

T1/20ν  > 2.8x1024 yr (90% C.L.) T1/20ν  > 9.5x1025 yr (90% C.L.)
Astroparticle Physics 34 (2011) 822
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CUORE Collaboration

(Oct. 31, 2013 @ LNGS)

21 institutes 
(USA+Italy)
166 people
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CUORE at LNGS
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CUORE at LNGS
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The CUORE Detector

(300 K)

(40 K)

(4 K)

(0.7 K)
(0.07 K)

(10 mK)

Pulse Tube 
Refrigerator (5)

Dilution
Refrigerator

Outer 
Lead Shield

PE + H3BO3 
Shield

988 TeO2 
bolometers 
(19 towers)

Top Shield 
(6 tons)

Side/Inner Shield 
(Roman Lead)
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The CUORE Detector

(300 K)

(40 K)

(4 K)

(0.7 K)
(0.07 K)

(10 mK)

Roman Lead 
Shield (6 tons)

doi:10.1038/news.2010.186 (nature)

Inner 
Lead Shield
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Progress towards CUORE

(300 K)

(40 K)

(4 K)

(0.7 K)
(0.07 K)

(10 mK)

Dilution Refrigerator  
reached 5 mK for the 
commissioning test,

has been integrated in 
the cryostat.

External 
shields 

installation 
finished.

- 19 towers completed. 
- Installation in the cryostat is 
anticipated in this summer.

Cryostat assembled, 
commissioning, 
passed 4 K Test, 
reached 5.9 mK,
wiring with mini-

tower tested.

CUORE-0, the first tower 
from CUORE assembly 
line has been running in 
the Cuoricino cryostat 

since March 2013.

Detector 
calibration 
system well 
underway.
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Outline

 CUORE :  An array of  TeO2 bolometers

 Summary

 CUORE-0 : Detector
 CUORE-0 : Resolution and Background
 CUORE-0 : Results

 CUORE-0 :  0νββ search w/ a single CUORE tower

 Neutrinoless double-beta decay (0νββ) search
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CUORE-0

The first CUORE-like tower
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Detector Assembly

Crystals are prepared & assembled 
into towers inside N2-fluxed glove 
boxes in a Class 1000 clean room.
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Gluing!

Assembly!

Storage!

Cryostat!

Gluing machine

Mechanical 
assembly

Wire 
bonding

Detector Assembly

Tower 
garage
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Completed Tower
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Tower Installation

After assembly

Transported from CUORE cleanroom to Cuoricino cleanroom

Attached to Cuoricino 
dilution refrigerator
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The CUORE-0 Experiment

52 (13 x 4) crystals, 39 kg of  TeO2 

(11 kg of  130Te), 4 kg of copper 
structure.
Validated new cleaning and 
assembly procedures for CUORE.
Verified understanding on the 
background sources.

Tested DAQ & Analysis framework 
for CUORE.
Taking 0νββ data since March 2013 
in former Cuoricino cryostat.

IVC

Modern Lead
(16±4) Bq/Kg

Modern Lead
(150±20) Bq/Kg

Borated PET

Roman lead
< 4 Bq/Kg

Plexiglass

Damper

Roman lead
< 4 Bq/Kg

Roman lead
< 4 Bq/Kg

Aluminium Plate

Brass Plate

OVC

Modern lead
150 Bq/Kg

Mixing Chamber

Stainless 
steel spring

Eur. Phys. J. C 74, 2956 (2014)
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Tower Response
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Outline

 CUORE :  An array of  TeO2 bolometers

 Summary

 CUORE-0 : Detector
 CUORE-0 : Resolution and Background
 CUORE-0 : Results

 CUORE-0 :  0νββ search w/ a single CUORE tower

 Neutrinoless double-beta decay (0νββ) search
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Start data taking in March 2013
Cryogenic maintenance between campaigns
Acquired 0νββ data till March 2015
35.2 kg-yr of  natTeO2

9.8 kg-yr of  130Te
Physics data

Calibration data
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Data Acquisition 
continuously sample and record 
the bolometer signal @ 125 S/s

Bolometer
Pulse

Raw Data Processing 
• software trigger thresholds (30-120 keV)
• signal, noise, pulser events
• filter pulse to optimize energy resolution
• signal (thermal) gain correction
• energy calibration (V      keV)

ROOT  
Data Trees

Event Selection 
• remove low quality events
• single pulse in 7.1s window 
• require pulse shape to be expected signal
• no other pulse in coincidence in other 
bolometers

Reduced
Data

Experimental Input

calibration, 
0νββ	data

background estimation, 
energy resolution
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Analysis Procedure: Experimental Input
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Experimental Input

Sta)s)cal	
TreatmentUnbinned	likelihood	

(UEML)	fit	
Bayesian	approach

Event Selection
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Analysis Procedure: Results & Interpretation
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Calibration Spectrum

CUORE-0  
Preliminary

CUORE-0  
Preliminary

E(StabAmpl) = a·StabAmpl + b·StabAmpl2

2104 keV  
(208Tl single 

escape)

1588 keV  
(228Ac) 

+ 
1592 keV  

(208Tl double 
escape)

2615 keV  
(208Tl)

965 keV, 
969 keV  
(228Ac)511 keV  

(e+e–)

583 keV  
(208Tl)
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Energy Resolution
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Bolometer-dataset FWHMs @ 2615 keV

CUORE-0  
Preliminary

Energy resolution is evaluated for each bolometer and dataset by fitting 
the 2615 keV peak from 208Tl in the calibration data.
The obtained resolution is < 5 keV, which is the CUORE goal.

FWHM harmonic 
mean [keV]

FWHM dist 
RMS [keV]

Cuoricino 5.8 2.1

CUORE-0 4.9 2.9

Weight FWHMs by 
corresponding exposure
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Background Spectrum
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(1)e+e-, (2)214Bi, (3)40K, (4)208Tl, (5)60Co, (6)228Ac

Physics spectrum 
Scaled calibration spectrum 
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Background Comparison with Cuoricino

γ background (from 232Th) was not reduced since the cryostat remained the same. 

γ background (from 238U chain) was reduced by a factor of 2.5 due to better 
radon control.
α background from copper surface and crystal surface was reduced by a factor of 
6.5 thanks to the new detector surface treatment.
Demonstrate CUORE sensitivity goal is within reach.
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Background Rate

Background rate [counts/keV/kg/y]  signal eff. [%]  
(detector+cuts)0νββ region  α region (excl. peak)

Cuoricino 0.169 ± 0.006 0.110 ± 0.001 82.8±1.1

CUORE-0 0.058 ± 0.011 0.016 ± 0.001 81.3±0.6

208Tl
190Pt

α region 

0νββ
region

α region 
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Outline

 CUORE :  An array of  TeO2 bolometers

 Summary

 CUORE-0 : Detector
 CUORE-0 : Resolution and Background
 CUORE-0 : Results

 CUORE-0 :  0νββ search w/ a single CUORE tower

 Neutrinoless double-beta decay (0νββ) search
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Blinding 0νββ Region

Region of Interest was blinded by “salting” :     
A small (and blinded) fraction of the events 

within ±10 keV in 208Tl photopeak are 
exchanged with events within ±10 keV of 

the 0νββ Q-value to produce a fake peak.

(May 2014)

Background at ROI can 
be characterized 

without biasing 0νββ 
analysis.

Energy [keV]

dN
/d

E Real Data 
Salted Data (f=0.15)

Data
 Salt

ing
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Unblinding
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Fit to the Unblinded ROI
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Simultaneous unbinned extended ML fit to range [2470,2570] keV
Fit function has 3 components:
1. Calibration-derived lineshape modeling posited fixed at 2527.5 keV
2. Calibration-derived lineshape modeling Co peak floated around 2505 keV
3. Continuum background
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Fitted background: 

Best-fit decay rate:  

0.058 ± 0.004 (stat.) ± 0.002 (syst.) counts/keV/kg/yr

Γ0νββ (130Te) = 0.01 ± 0.12 (stat.) ± 0.01 (syst.) × 10–24 yr–1
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Reconstructed Energy [keV]
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Γ0νββ (130Te) < 0.25 × 10–24 yr–1 (90% C.L., statistics only) 

T1/20νββ(130Te) > 2.7 × 1024 yr (90% C.L., statistics only)

Fit to the Unblinded ROI
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Systematics

For each systematic, we run toy MC exps. to evaluate bias on fitted 0νββ rate.
Bias is parameterized as p0 + p1xΓ, where p0 =“additive” and p1=“scaling”
Signal lineshape: Used variety of different line shapes to model signal

Energy resolution:  Apply 1.05 ± 0.05 correction to calibration-derived resolution

Fit bias: Effect of using unbanned extended ML fit to extract values

Energy scale: Assign 0.12 keV uncertainty derived from peak residuals in physics spectrum

Bkg function: Choices of 0-,1-,2- order polynomial.
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Systematics

Γ0νββ (130Te) < 0.25 × 10–24 yr–1 (90% C.L., stat.+sys.) 

T1/20νββ(130Te) > 2.7 × 1024 yr (90% C.L., stat.+sys.)

We find no evidence for 0νββ of 130Te (report the Bayesian limits) 
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Combining Cuoricino & CUORE+0
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Combining the CUORE-0 result with the Cuoricino result from 
19.75 kg-yr of 130Te exposure yields the Bayesian lower limit:

T1/20νββ(130Te) > 4.0 × 1024 yr (90% C.L., stat.+sys.)

CUORE-0 
Preliminary 

 arXiv:1504.02454 
Submitted to PRL
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Limits on Effective Majorana Mass
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CUORE 90% C.L. sensitivity

IH

NH

〈mββ〉 < 270 – 650 meV  

 1) IBM-2 (PRC 91, 034304 (2015)) 
 2) QRPA (PRC 87, 045501 (2013)) 
 3) pnQRPA (PRC 024613 (2015) 
 4) ISM (NPA 818, 139 (2009)) 
 5) EDF (PRL 105, 252503 (2010))

Including additional 
Shell-Model NME

〈mββ〉 < 270 – 760 meV  

 1) IBM-2 (PRC 91, 034304 (2015)) 
 2) QRPA (PRC 87, 045501 (2013)) 
 3) pnQRPA (PRC 024613 (2015) 
 4) Shell Model (PRC 91, 024309 (2015)) 
 5) ISM (NPA 818, 139 (2009)) 
 6) EDF (PRL 105, 252503 (2010))
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CUORE: Background Budget

Environmental γ

Environmental n

Environmental μ

Far bulk: Cu OFE 

Far bulk: Steel parts

Internal Roman Lead
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Small near parts
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Dashed area = 90%CL upper limit

Full colour area = value
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CUORE: Sensitivity

lead shield- Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 
counts/(keV·kg·yr)

- 5 years of live time.  arXiv:1109.0494

(130Te) > 9.5 × 1025 y (90% C.L.)T1 2
0νββ

(130Te) > 2.8 × 1024 y (90% C.L.)T1 2
0νββ

mββ: 50-130 meV
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Summary

Observation of 0νββ will establish that neutrinos are Majorana particles.

TeO2 bolometers offer a well-established and competitive technique to 
search for 0νββ.

CUORE-0 and Cuoricino, the experiments on the way to CUORE, did 
not find evidence of 0νββ of130Te.

CUORE-0, the first CUORE-like tower currently operating at LNGS, 
demonstrated background suppression and resolution improvements, i.e., 
achieved goals for CUORE.

CUORE, the largest cryogenic detector using TeO2 bolometers with 206 
kg of 130Te mass, completed detector construction and commissioning of 
the cryogenic system along with infrastructure is well underway.

CUORE is scheduled to start data-taking in late 2015 and various R&D 
projects are on-going for searches beyond CUORE.


