

# Search for WIMP-Induced Annual Modulation with the CUORE-0 Experiment

Kyungeun E. Lim on behalf of the CUORE collaboration

Oct. 14, 2016, APS Division of Nuclear Physics Meeting, Vancouver, Canada



# The CUORE Program





Kyungeun E. Lim (Yale)

2

# The CUORE Program





#### CUORE-0 Data





Physics data

Calibration data

dataset: share calibration coefficients (~ 1 month)

Measured the half-life of  $2\nu\beta\beta$  of <sup>130</sup>Te with the highest precision (arXiv: 1609.01666)

#### WIMP dark matter annual modulation analysis under finalization

# Principle of WIMP Direct Detection



Goodman and Witten: Elastic Scattering of WIMPs off Target Nuclei (1985)





### Expected WIMP Signal







6

#### **Detector Requirements**



- Low energy threshold
- Stable detector operation
- Low background
- Large detector mass







- Solution Use a pulse shape parameter (built upon  $\chi^2$  of a pulse with respect to an ideal pulse,  $\chi^2_{OT}$ ) to select legitimate signal candidates against non-physical events
- Energy thresholds for each channel-dataset (ch-ds) pairs are obtained using Kolmogorov-Smirnov test (compare y-axis projection of with and choose the lower edge of where KS prob > 0.1)



- Peak position of 27 keV X-ray from Te is firstly used to select the ch-ds pairs, as well as to evaluate uncertainty on the energy scale obtained from calibration
- For those ch-ds pairs with E<sub>th</sub> > 27 keV selected with KS-test, their summed 40-keV peak position difference from those with 27-keV peak is evaluated to be 0.03 +/-0.06 keV, and is integrated as a part of uncertainty on the energy scale (see slide 12)

# Nuclear Recoil Quenching of TeO<sub>2</sub>



- Nuclear quenching factor of a bolometer (read only phonon signal) is expected to be 1
- Using surface alpha events, it is possible to measure nuclear quenching of recoiling nuclei from <sup>210</sup>Po, <sup>222</sup>Rn, <sup>224</sup>Ra, <sup>218</sup>Po decays
- The largest deviation from 1 (7%, measured by <sup>206</sup>Pb) is integrated as uncertainty on the energy scale



# Low Energy Spectrum



Origin of peaks around 40-keV is under investigation (most likely due to <sup>210</sup>Pb)

Rates of these peaks are stable as a function of time

Kyungeun E. Lim (Yale)

Rate [counts/day/kg/keV]

10<sup>-1</sup>

**CUORE-0** 

Preliminary

# CUORE-0 and CUORE Sensitivities





CUORE is expected to test the DAMA WIMP observation claim with 5 years of data accumulation

# Summary



- CUORE, a competitive  $0\nu\beta\beta$  decay search using 742 kg of TeO<sub>2</sub> crystals, is also suitable for low energy event searches thanks to its low energy event identification ability
- Nuclear recoil quenching using CUORE-0, the predecessor of CUORE, has been measured using surface alpha events
- WIMP-Induced annual modulation analysis of CUORE-0 is under finalization, and we will report dark matter results using Te as a target material with significant mass for the first time soon
- CUORE is expected to probe the DAMA WIMP observation region with 5 years of data-taking
- CUPID, beyond CUORE using particle discrimination to further suppress the background, will be a competitive dark matter search

#### **CUORE** Collaboration







#### Extra Slides

# $\chi^2_{OT}$ : Energy Dependence



- We evaluate the  $\chi^2_{OT}$  efficiency using side band, so it is important to ensure this side bands behavior is similar at ROI
- Previously we were using 80-180 keV region to stay away from the noise but there's energy dependence on in the median value of  $\chi^2_{OT}$  so we decided to move to 35-50 keV region



DS2100, Ch2



Kyungeun E. Lim (raie)

OT\_ChiSquare

## Energy Thresholds with KS Test

For every energy slice, compare the chi2 distribution with that of the events in 35-50 keV region and calculate the probability that both follow the same distribution by a Kolmogorov–Smirnov test Put threshold when KS prob > 0.1



#### Slices energy bin: 4 keV





Chi2



## **Optimum Trigger**



Optimum Trigger (OT) filters data buffer with a transfer function that maximizes the SNR cutting down the noise frequencies:





filtered pulses are less noisy
lower threshold achievable with respect to the standard trigger







TABLE II: Obtained quenching factors for the selected nuclei

| Daughter Nuclei   | Fit Range | Expected Energy | Measured Energy   | Quenching factor  |
|-------------------|-----------|-----------------|-------------------|-------------------|
| $^{206}$ Pb       | [90, 180] | 103.12          | $95.62 \pm 0.24$  | $0.927 \pm 0.002$ |
| <sup>218</sup> Po | [45,210]  | 100.8           | $100.0 \pm 0.9$   | $0.992 \pm 0.009$ |
| <sup>220</sup> Rn | [84,200]  | 103.50          | $100.45 \pm 1.21$ | $0.971 \pm 0.012$ |
| $^{214}$ Pb       | [87, 192] | 112.13          | $110.92 \pm 0.96$ | $0.989 \pm 0.009$ |

#### 40-keV Peak Difference



Kyungeun E. Lim (Yale)

**CUORE** 



#### Possible Origin of Peaks Below 60 keV



# Robustness of the CUORE Sensitivity





24

CUORE



| Origin         | Energy | Intensity per 100 vacancies in the K-shell |
|----------------|--------|--------------------------------------------|
|                | [keV]  | [%]                                        |
| $K_{\alpha 3}$ | 26.875 | 0.00202                                    |
| $K_{\alpha 2}$ | 27.202 | 25.3                                       |
| $K_{\alpha 1}$ | 27.472 | 47.1                                       |
| $K_{\beta 3}$  | 30.944 | 4.25                                       |
| $K_{\beta 1}$  | 30.995 | 8.19                                       |
| $K_{\beta 5}$  | 31.237 | 0.075                                      |
| $K_{\beta 2}$  | 31.704 | 2.37                                       |
| $K_{\beta 4}$  | 31.774 | 0.363                                      |

Energies and intensity of K-lines originated from Te around 27 keV and 31 keV from http://nucleardata.nuclear.lu.se/toi/xray.asp?act=list&el=Te