

Search for Low Energy Events with CUORE-0 and CUORE

Kyungeun E. Lim (on behalf of the CUORE collaboration)

Oct. 30. 2015, APS Division of Nuclear Physics meeting, Santa Fe, NM

The CUORE Experiment

Plates:

300 K-

40 K-

4 K-

600 mK-

50 mK-

10 mK-

- CUORE is a cryogenic detector consisting of 988 TeO₂ bolometers
- **Primarily search for 0\nu\beta\beta decay**
- Located at LNGS in Italy
- In the final stages of construction, data-taking will begin in early 2016
- With 5 years of data accumulation, $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) > 9.5 \times 10^{25} \text{ y (90\% C.L.)}$

 $m_{\beta\beta} < 50-130 \text{ meV}$

Also suitable for Dark Matter Search

WIMP Search with CUORE

- Total target mass of 741 kg
- Stable detector operation expected with pulse tube and dilution refrigerators
- Bolometer offers low energy threshold and good energy resolution
- Quenching factor ~ I benefits detection of nuclear recoil events

WIMP Search with CUORE

- Total target mass of 741 kg
- Stable detector operation expected with pulse tube and dilution refrigerators
- Bolometer offers low energy threshold and good energy resolution
- Quenching factor ~ I benefits detection of nuclear recoil events
- First dark matter search with Te

Energy Threshold

Continuous Data Acquisition provides access to the low energy events

Optimal Filter can identify low energy events

3 keV signal

Detection Efficiency

Energy Resolution

- 30 keV peak shows as low as 0.5 keV FWHM resolution
- Provides possibility of spectral background study at the dark matter region of interest

Nuclear Recoil Quenching

Using surface alpha events, it is possible to measure nuclear quenching of recoiling nuclei from ²¹⁰Po, ²¹⁸Po, ²²²Rn decays

Nuclear Recoil Quenching

- Using surface alpha events, it is possible to measure nuclear quenching of recoiling nuclei from ²¹⁰Po, ²¹⁸Po, ²²²Rn decays
- Nuclear quenching factor of phonon detector is expected to be I
- The largest deviation from I measured by ²⁰⁶Pb was integrated as uncertainty on the nuclear recoil energy scale

Nuclear Recoil Quenching

- Nuclear quenching factor of phonon detector is expected to be 1
- The largest deviation from I measured by ²⁰⁶Pb was integrated as uncertainty on the nuclear recoil energy scale

CUORE is expected to test the DAMA WIMP observation claim with 5 years of data accumulation

Summary

- CUORE, a competitive $0\nu\beta\beta$ decay search using 741 kg of TeO₂ crystals, is also suitable for low energy event searches
- Low energy threshold and excellent energy resolution demonstrated by crystal validation measurements
- Nuclear recoil quenching using CUORE-0, the predecessor of CUORE, has been measured using surface alpha events
- Annual modulation analysis of CUORE-0 is on-going and will report dark matter results using Te as a target material for the first time soon
- CUORE is expected to probe the DAMA WIMP observation region with 5 years of data-taking
- CUPID, beyond CUORE using particle discrimination to further suppress the background will be a competitive dark matter search

CUORE Collaboration

(Oct. 2, 2015 @ LNGS)

UNIVERSITY OF SOUTH CAROLINA

Kyungeun E. Lim (Yale University)

Lawrence Livermore National Laboratory

