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What we know about Neutrinos
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What we don’t know about Neutrinos
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Outline

 CUORE :  An array of  TeO2 bolometers

 CUORE-0 :  0νDBD search w/ a single CUORE tower

 Summary

 Neutrinoless double-beta decay (0νDBD) search

 CUORE-0 : Detector"
 CUORE-0 : Performance and Background"
 CUORE-0 : Projected Sensitivity
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Neutrino(less) double-beta decay

Observation of 0νDBD 
1. will establish that neutrinos are Majorana Particles (         )"
2. will provide indirect info about the ν mass  "
3. may provide info about the mass hierarchy  
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Signature of 0νDBD

dramatic progress in our ability to compensate for high-
momentum physics that is cut out !see, e.g., Bogner et al.
"2003#$, but reliably correcting for low energy excitations
such as core polarization is a longstanding problem. Par-
tial summation of diagrams, a tool of traditional
effective-interaction theory, is helpful but apparently not
foolproof.

In the long term these issues will be solved. As al-
ready mentioned, the coupled-cluster approximation, an
expansion with controlled behavior, is being applied in
nuclei as heavy as 40Ca. With enough work on three- and
higher-body forces, on center-of-mass motion, and on
higher-order clusters, we should be able to handle 76Ge.
The time it will take is certainly not short, but may be
less than the time it will take for experimentalists to see
neutrinoless double beta decay, even if neutrinos are in-
deed Majorana particles and the inverted hierarchy is
realized. And the pace of theoretical work will increase
dramatically if the decay is seen. Observations in more
than one isotope will only make things better. Our opin-
ion is that the uncertainty in the nuclear matrix elements
in no way reduces the attractiveness of double beta de-
cay experiments. Given enough motivation, theorists are
capable of more than current work seems to imply.

VI. EXPERIMENTAL ASPECTS

A. Background and experimental design

Double beta decay experiments are searching for a
rare peak "see Fig. 5# upon a continuum of background.
Observing this small peak and demonstrating that it is
truly !!"0"# is a challenging experimental design task.
The characteristics that make an ideal !!"0"# experi-
ment have been discussed "Elliott and Vogel, 2002; Zde-
senko 2002; Elliott, 2003#. Although no detector design
has been able to incorporate all desired characteristics,
each includes many of them. "Section VII.C describes
the various experiments.# Here we list the desirable fea-
tures:

• The detector mass should initially be large enough to
cover the degenerate mass region "100–200 kg of iso-

tope# and be scalable to reach the inverted-hierarchy
scale region "%1 ton of isotope#.

• The !!"0"# source must be extremely low in radio-
active contamination.

• The proposal must be based on a demonstrated tech-
nology for the detection of !!.

• A small detector volume minimizes internal back-
grounds, which scale with the detector volume. It
also minimizes external backgrounds by minimizing
the shield volume for a given stopping power. A
small volume is easiest with an apparatus whose
source is also the detector. Alternatively, a very large
source may have some advantage due to self-
shielding of a fiducial volume.

• Though expensive, the enrichment process usually
provides a good level of purification and also results
in a "usually# much smaller detector.

• Good energy resolution is required to prevent the
tail of the !!"2"# spectrum from extending into the
!!"0"# region of interest. It also increases the signal-
to-noise ratio, reducing the background in the region
of interest. Two-neutrino double beta decay as back-
ground was analyzed by Elliott and Vogel "2002#.

• Ease of operation is required because these experi-
ments usually operate in remote locations and for
extended periods.

• A large Q!! usually leads to a fast !!"0"# rate and
also places the region of interest above many poten-
tial backgrounds.

• A relatively slow !!"2"# rate also helps control this
background.

• Identifying the daughter in coincidence with the !!
decay energy eliminates most potential backgrounds
except !!"2"#.

• Event reconstruction, providing kinematic data such
as opening angles and individual electron energies,
can reduce background. These data might also help
distinguish light- and heavy-particle exchange if a
statistical sample of !!"0"# events is obtained.

• Good spatial resolution and timing information can
help reject background processes.

• The nuclear theory is better understood in some iso-
topes than others. The interpretation of limits or sig-
nals might be easier for some isotopes.

Historically, most !! experiments have faced U and
Th decay-chain isotopes as their limiting background
component. A continuum spectrum arising from
Compton-scattered # rays, ! rays "sometimes in coinci-
dence with internal conversion electrons#, and $ par-
ticles from the naturally occurring decay chains can
overwhelm any hoped for peak from the !!"0"# signal.
This continuum is always present because U and Th are
present as contaminants in all materials. The level of
contamination, however, varies from material to mate-

FIG. 5. The distribution of the sum of electron energies for
!!"2"# "dotted curve# and !!"0"# "solid curve#. The curves
were drawn assuming that %0" is 1% of %2" and for a 1−&
energy resolution of 2%.

496 Avignone, Elliott, and Engel: Double beta decay, Majorana neutrinos, and …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008

2νββ

0νββ

( Assumes BR 0ν/2ν = 1% and 
detector energy resolution is 2%)

ββ summed e- energy spectrum

Look for peak in the detector at the Q-value of decay."
Good energy resolution of a detector suppresses intrinsic 
background from 2νDBD. 
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a isotopic abundance of source

ε detection efficiency 

M total detector mass

b background rate /mass/energy 

t exposure time

δE energy resolution (spectral width)
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Detector Building/"
Source Selection Strategies

a isotopic abundance of source

ε detection efficiency 

M total detector mass

b background rate /mass/energy 

t exposure time

δE energy resolution (spectral width)

Large total mass"
Ultra-low background"
Good energy resolution "
High Q-value"
High isotopic abundance"
NME
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TeO2 Bolometers

Measure energy 
deposition through 
temperature rise.
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 Neutrinoless double-beta decay (0νDBD) search

 CUORE :  An array of  TeO2 bolometers

Outline

 CUORE-0 :  0νDBD search w/ a single CUORE tower

 Summary

 CUORE-0 : Detector"
 CUORE-0 : Performance and Background"
 CUORE-0 : Projected Sensitivity
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CUORE-0"
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CUORE Collaboration

(Oct. 31, 2013 @ LNGS)
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CUORE at LNGS
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The CUORE Detector
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(40 K)
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Pulse Tube 
Refrigerator (5)

Dilution"
Refrigerator

Outer 
Lead Shield

PE + H3BO3 
Shield

988 TeO2 
bolometers 
(19 towers)

Roman Lead 
Shield (6 tons)
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Lead Shield
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The CUORE Detector

(300 K)

(40 K)

(4 K)

(0.7 K)
(0.07 K)

(10 mK)

Pulse Tube 
Refrigerator (5)

Dilution"
Refrigerator

Outer 
Lead Shield

PE + H3BO3 
Shield

988 TeO2 
bolometers 
(19 towers)

Roman Lead 
Shield (6 tons)

Inner "
Lead Shield

doi:10.1038/news.2010.186 (nature)
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Progress towards CUORE

(300 K)

(40 K)

(4 K)

(0.7 K)
(0.07 K)

(10 mK)

Dilution Refrigerator  
reached 5 mK for the 
commissioning test.

External 
shields 

installation is 
ongoing

- 13 out of 19 towers completed. "
- Installation in the cryostat is 
anticipated in this year.

Cryostat 
assembled, 

commissioning, 
passed 4 K Test.

CUORE-0, the first tower 
from CUORE assembly 

line is running in the 
Cuoricino cryostat.

Detector 
calibration 
system well 
underway.
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Outline

 CUORE :  An array of  TeO2 bolometers

 Summary

 CUORE-0 : Detector"
 CUORE-0 : Performance and Background"
 CUORE-0 : Projected Sensitivity

 CUORE-0 :  0νDBD search w/ a single CUORE tower

 Neutrinoless double-beta decay (0νDBD) search
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CUORE-0

The first CUORE-like tower 
hosted in old Cuoricino cryostat.
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CUORE-0

lead shield

borated-
polyethylene 

shield
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CUORE-0

The first CUORE-like tower 
hosted in old Cuoricino cryostat."
52 (13 x 4) crystals, 39 kg of  TeO2 

(11 kg of  130Te), 4 kg of copper 
structure."
Validated new cleaning and 
assembly procedures for CUORE."
Taking 0νDBD data since March 
2013."
Will surpass Cuoricino sensitivity 
before CUORE starts running.lead shield
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TeO2 Crystals

Crystal cutting, wrapping is done in 
the clean room in SICASS."
Visual Inspection                         
(Free of precipitates/cracks/scratches)"
Randomly select 4 crystals from each 
production batch and test bolometric 
performance (CUORE Crystal 
Validation Runs, CCVR)

CCVR 1-9

Avg: 5.1 +/- 2.1 keV

!27
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Radioactivity of the Crystals

CCVR also serves as radioactive contamination measurements of 
the crystals.

 Astropart. Phys. 35, 839 (2012)
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Reduction of Copper Surface Contamination

Three Tower Test (TTT)
- T1:  Polyethylene wrapped"
- T2:  Chemical etching and cleaning"
- T3:  Tumbling, Electropolishing, Chemical etching,  "
        and Magnetron plasma etching (TECM) cleaning

- Best results (T1) is 0.052±0.008 c/keV/kg/yr in the 2.7 
to 3.9 MeV range."
- T3 is comparable to T1."
- Half the background rate of Cuoricino.

 Astropart. Phys. 
45, 13 (2013)
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Detector Assembly

Gluing!

Assembly!

Storage!

Cryostat!

Crystals are prepared & assembled into towers inside N2-fluxed glove 
boxes in a Class 1000 clean room.
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Gluing!

Assembly!

Storage!

Cryostat!

Gluing machine

Mechanical 
assembly

Wire 
bonding

Tower 
garage

Detector Assembly
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Improvements on Wiring

 Nucl. Instrum. Meth. A 718, 211 (2013)
!32

Cu-PEN flat flexible tape

Mixing 
Chamber

80 cm
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 Analysis Procedure

Data Acquisition 
continuously sample bolometer 
traces @ 125 S/s

Bolometer"
Pulse

Raw Data Processing 
• software trigger (> 50-100 keV)"
• signal, noise, pulser events"
• signal size evaluation"
• signal gain correction"
• energy calibration (V      keV)

ROOT  
Data Trees

Event Selection 
• remove low quality events"
• single pulse in 7.1s window "
• pulse shape "
• no other pulse in coincidence in 
other bolometers

Reduced"
Data

Experimental Input

0νDBD%data 
sidebands, 

blind%

Nuclear%%
Physics

Single%Bin%
Coun;ng%(w/%
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background estimation, 
energy resolution
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 Tower Response
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 CUORE-0 is also sensitive to Earthquake!

 J. Ouellete, Aug 26, 2013, CUORE Analysis Meeting @ LNGS
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CUORE-0: Calibration

Calibration 
access ports

Outer lead 
shield

!36
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CUORE-0: Calibration

Calibration 
access ports

Outer lead 
shield

50 Bq 232Th 
!37
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Calibration Spectrum
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Calibration/Background Spectrum
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CUORE-0: Background

γ background (from 232Th) was not reduced since the cryostat remained the same. "
γ background (from 238U) was reduced by a factor of 2 due to better radon 
control."
α background from copper surface and crystal surface was reduced by a factor of 
6 thanks to the new detector surface treatment.
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Compared to Cuoricino…
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CUORE-0: Background

Avg. flat bkg. [counts/keV/kg/y]  signal eff. [%]  
(detector+cuts)0νDBD region 2700-3900 keV

Cuoricino 0.153 ± 0.006 0.110 ± 0.001 82.8±1.1

CUORE-0 0.071 ± 0.011 0.019 ± 0.002 80.4±1.9
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Blinding 0νDBD Region
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Region of Interest was blinded by “salting” : 
exchange a small (and blinded) fraction of the 

events in 208Tl peak with events in the 0νDBD 
region to produce fake peak.

Fake Peak!
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CUORE-0 Sensitivity

Expected to surpass Cuoricino limit w/ 1.1 year of live time.
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CUORE Sensitivity
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CUORE Sensitivity
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Beyond CUORE

Light Detector

Light"
(Cherenkov 

emission"
/scintillation)

Thermometer

Energy "
Deposit

(Scintillating)"
Bolometer

130TeO2, Zn82Se, 
116CdWO4,"
Zn100MoO4

Enrichment of the isotope."
Particle discrimination by simultaneously measuring heat/light.

- Trailing Edge Sensor"
- Microwave Kinetic 
Inductance Detectors
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Beyond CUORE
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Summary

TeO2 bolometers offer a well-established and competitive technique to search 
for 0νDBD. "

!
CUORE, the largest cryogenic detector using TeO2 bolometers with 206 kg of 
130Te mass, is under construction."

!
Significant efforts have been made to reach very low background goals of 
CUORE. "

!
CUORE-0, the first CUORE-like tower currently operating at LNGS, 
demonstrated the success of background mitigation."

!
CUORE-0 will surpass the sensitivity of a predecessor experiment in the 
coming year."

!
CUORE will start to take data next year (2015)."

!
Various R&D projects are ongoing for searches beyond CUORE.


