

Search for Neutrinoless Doublebeta Decay with CUORE-0

Kyungeun E. Lim (on behalf of the CUORE collaboration)

What we know about Neutrinos

Rep. Prog. Phys. 76, 056201 (2013)

What we don't know about Neutrinos

Outline

- Neutrinoless double-beta decay (0νDBD) search
- CUORE: An array of TeO₂ bolometers
- CUORE-0: 0vDBD search w/ a single CUORE tower
 - CUORE-0 : Detector
 - CUORE-0 : Performance and Background
 - CUORE-0 : Projected Sensitivity
- Summary

Neutrino(less) double-beta decay

- Allowed in SM
- Observed in several nuclei $(T_{1/2}^{2v} \sim 10^{18} 10^{21} \text{ yr})$

0vDBD

- Beyond SM (Lepton number violating process)
- Hypothetical process only if $v=\overline{v}$ and $m_v>0$

Observation of 0vDBD

- I. will establish that neutrinos are Majorana Particles ($v = \overline{v}$)
- 2. will provide indirect info about the V mass
- 3. may provide info about the mass hierarchy

Signature of 0vDBD

$\beta\beta$ summed e energy spectrum

- Look for peak in the detector at the Q-value of decay.
- Good energy resolution of a detector suppresses intrinsic background from 2vDBD.

Signature of 0vDBD

$\beta\beta$ summed e energy spectrum

- Look for peak in the detector at the Q-value of decay.
- Good energy resolution of a detector suppresses intrinsic background from 2vDBD.

Decay rate:

Well defined
$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \ |M^{0\nu}|^2 \ |m_{\beta\beta}\rangle|^2$$

Т	0∨DBD half-life
G	phase space factor $(\propto Q^5)$
M	Nuclear Matrix Element (NME)
m	effective $\beta\beta$ neutrino mass
m	electron mass

Difficult to calculáte

- Probes absolute mass scale
- Sensitive to hierarchy

Decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

$${\sf T}_{\sf I/2}{}^{\sf OV}$$
 sensitivity $\propto a \cdot \epsilon \sqrt{rac{M \cdot t}{b \cdot \delta E}}$

Т	0∨DBD half-life
G	phase space factor $(\propto Q^5)$
M	Nuclear Matrix Element (NME)
m	effective ββ neutrino mass
m	electron mass

a	isotopic abundance of source
3	detection efficiency
М	total detector mass
b	background rate /mass/energy
t	exposure time
δΕ	energy resolution (spectral width)

Decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

T_{I/2}° sensitivity
$$\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$$

Detector Building/ Source Selection Strategies

- Large total mass
- Ultra-low background
- Good energy resolution
- High Q-value
- High isotopic abundance
- NME

Т	0∨DBD half-life
G	phase space factor $(\propto Q^5)$
M	Nuclear Matrix Element (NME)
m	effective $\beta\beta$ neutrino mass
m	electron mass

a	isotopic abundance of source
3	detection efficiency
M	total detector mass
b	background rate /mass/energy
t	exposure time
δΕ	energy resolution (spectral width)

Decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{(\langle m_{\beta\beta} \rangle)^2}{m_e^2}$$

$${\sf T}_{\sf I/2}{}^{\sf OV}$$
 sensitivity $\propto a \cdot \epsilon \sqrt{rac{M \cdot t}{b \cdot \delta E}}$

Detector Building/ Source Selection Strategies

- Large total mass
- Ultra-low background
- Good energy resolution
- High Q-value
- High isotopic abundance
- NME

Т	0∨DBD half-life
G	phase space factor $(\propto Q^5)$
M	Nuclear Matrix Element (NME)
m	effective ββ neutrino mass
m	electron mass

a isotopic abundance of source

130Te for 0vDBD

■ ¹³⁰Te + thermal detector w/ excellent energy resolution is appealing for the 0vDBD detection.

TeO₂ Bolometers

Measure energy deposition through temperature rise.

Outline

- Neutrinoless double-beta decay (0vDBD) search
- CUORE: An array of TeO₂ bolometers
- CUORE-0: 0vDBD search w/ a single CUORE tower
 - CUORE-0 : Detector
 - CUORE-0: Performance and Background
 - CUORE-0 : Projected Sensitivity
- Summary

The CUORE OVDBD Search

CUORE: Cryogenic
Underground Observatory
for Rare Events

Cuoricino (2003-2008)

Achieved (2008)

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 300 - 710 \text{ meV}$

CUORE-0 (2013-2015)

Projected (2015)

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 204 - 533 \text{ meV}$

CUORE (2015-2020)

Projected (2020)

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 51 - 133 \text{ meV}$

The CUORE OVDBD Search

Cuoricino (2003-2008)

Achieved (2008)

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 300 - 710 \text{ meV}$

CUORE (2015-2020)

CUORE Collaboration

(Oct. 31, 2013 @ LNGS)

CUORE at LNGS

CUORE at LNGS

The CUORE Detector

The CUORE Detector

Progress towards CUORE

- 13 out of 19 towers completed.
- Installation in the cryostat is anticipated in this year.

from CUORE assembly line is running in the Cuoricino cryostat.

Outline

- Neutrinoless double-beta decay (0vDBD) search
- CUORE: An array of TeO₂ bolometers
- CUORE-0: 0νDBD search w/ a single CUORE tower
 - CUORE-0 : Detector
 - CUORE-0: Performance and Background
 - CUORE-0 : Projected Sensitivity
- Summary

CUORE-0

The first CUORE-like tower hosted in old Cuoricino cryostat.

CUORE-0

CUORE-0

- The first CUORE-like tower hosted in old Cuoricino cryostat.
- 52 (13 x 4) crystals, 39 kg of TeO₂ (11 kg of ¹³⁰Te), 4 kg of copper structure.
- Validated new cleaning and assembly procedures for CUORE.
- Taking 0vDBD data since March 2013.
- Will surpass Cuoricino sensitivity before CUORE starts running.

TeO₂ Crystals

- Crystal cutting, wrapping is done in the clean room in SICASS.
- Visual Inspection(Free of precipitates/cracks/scratches)
- Randomly select 4 crystals from each production batch and test bolometric performance (CUORE Crystal Validation Runs, CCVR)

Radioactivity of the Crystals

CCVR also serves as radioactive contamination measurements of

the crystals.

Astropart. Phys. 35, 839 (2012)

Reduction of Copper Surface Contamination

Astropart. Phys.

45, 13 (2013)

Three Tower Test (TTT)

- -TI: Polyethylene wrapped
- T2: Chemical etching and cleaning
- T3: Tumbling, Electropolishing, Chemical etching, and Magnetron plasma etching (TECM) cleaning
- Best results (TI) is 0.052±0.008 c/keV/kg/yr in the 2.7 to 3.9 MeV range.
- -T3 is comparable to T1.
- Half the background rate of Cuoricino.

K. E. Lim (Yale University)

Detector Assembly

Crystals are prepared & assembled into towers inside N₂-fluxed glove boxes in a Class 1000 clean room.

Detector Assembly

K. E. Lim (Yale University)

Improvements on Wiring

Nucl. Instrum. Meth. A 718, 211 (2013)

Analysis Procedure

Data Acquisition

continuously sample bolometer traces @ 125 S/s

Bolometer Pulse

Raw Data Processing

- · software trigger (> 50-100 keV)
- · signal, noise, pulser events
- · signal size evaluation
- · signal gain correction
- energy calibration $(V \rightarrow keV)$

ROOT
Data Trees

Experimental Input

OvDBD data sidebands, blind

background estimation, energy resolution

Reduced Data

Event Selection

- remove low quality events
- · single pulse in 7.1s window
- · pulse shape
- no other pulse in coincidence in other bolometers

Analysis efficiency

Tower Response

CUORE-0 is also sensitive to Earthquake!

- Time of Earthquake: 2013-07-21 01:32:25 UTC.
- Time of baseline jump: 2013-07-21 01:32:47 UTC.

- Location of Origin: (4492.7,1099.9,4362.4) km WGS84.
- Location of Opera: (4582.167465,1106.521805,4283.602714) km.
- Baseline: 119329.0 ± 500m.
- Earthquake propogation speed: (5424 ± 245) m/s
- Typical measured values are 5200-5900 m/s.

J. Ouellete, Aug 26, 2013, CUORE Analysis Meeting @ LNGS

CUORE-0: Calibration

Calibration access ports

Outer lead shield

CUORE-0: Calibration

Calibration Spectrum

Calibration/Background Spectrum

CUORE-0: Background

Compared to Cuoricino...

- \blacksquare γ background (from 232 Th) was not reduced since the cryostat remained the same.
- γ background (from ²³⁸U) was reduced by a factor of 2 due to better radon control.
- α background from copper surface and crystal surface was reduced by a factor of
 6 thanks to the new detector surface treatment.

CUORE-0: Background

	Avg. flat bkg. [counts/keV/kg/y]		signal eff. [%]
	0νDBD region	2700-3900 keV	(detector+cuts)
Cuoricino	0.153 ± 0.006	0.110 ± 0.001	82.8±1.1
CUORE-0	0.071 ± 0.011	0.019 ± 0.002	80.4±1.9

Blinding OVDBD Region

Region of Interest was blinded by "salting": exchange a small (and *blinded*) fraction of the events in ²⁰⁸Tl peak with events in the 0vDBD region to produce *fake* peak.

CUORE-0 Sensitivity

Expected to surpass Cuoricino limit w/ I.I year of live time.

CUORE Sensitivity

- I σ sensitivity $T_{1/2}^{0\nu\beta\beta}=1.6 \times 10^{26}$ yr (Effective Majorana mass 47-100 meV).
 - Assuming bg rate of 0.01 cts/(keV kg y) and 5 keV FWHM ROI resolution.
 - 5 years of live time.

arXiv:1109.0494

CUORE Sensitivity

- I σ sensitivity $T_{1/2}^{0\nu\beta\beta}=1.6\times10^{26}$ yr (Effective Majorana mass 47-100 meV).
 - Assuming bg rate of 0.01 cts/(keV kg y) and 5 keV FWHM ROI resolution.
 - 5 years of live time.

arXiv:1109.0494

Beyond CUORE

- Enrichment of the isotope.
- Particle discrimination by simultaneously measuring heat/light.

Beyond CUORE

- Enrichment of the isotope.
- Particle discrimination by simultaneously measuring heat/light.

K. E. Lim (Yale University)

Summary

- TeO₂ bolometers offer a well-established and competitive technique to search for 0vDBD.
- CUORE, the largest cryogenic detector using TeO₂ bolometers with 206 kg of ¹³⁰Te mass, is under construction.
- Significant efforts have been made to reach very low background goals of CUORE.
- CUORE-0, the first CUORE-like tower currently operating at LNGS, demonstrated the success of background mitigation.
- CUORE-0 will surpass the sensitivity of a predecessor experiment in the coming year.
- CUORE will start to take data next year (2015).
- Various R&D projects are ongoing for searches beyond CUORE.