### Search for Neutrinoless Double Beta Decay: Recent Results and Future Prospects



Karsten M. Heeger Yale University

CIPANP, May 19, 2015



### **Neutrinos - The First 85 Years**



### **Neutrinos Oscillate and Have Mass**

#### **Neutrino Oscillation experiments**

- Neutrinos undergo flavor-changing oscillations
- Neutrinos have mass







Why is neutrino mass so small? How small is it? What is the mass generating mechanism?

### **Neutrino Mass and Hierarchy**



#### We know

- mass splitting
- mixing angles
- minimum mass

$$\Delta m_{atm}^2 - m_v > 0.045 \text{ eV}$$

#### We don't know

- mass ordering
- absolute scale
- CP phases
- nature of neutrino mass

### **Early Days of Double Beta Decay**

#### 1930, Pauli



FIG. 5. Energy distribution curve of the beta-rays.



#### 1932, Fermi





1935, Goeppert Mayer

#### 1937, Majorana



### **Double Beta Decay**

2νββ



Proposed in 1935 by Maria Goeppert-Mayer Observed in several nuclei

 $T_{1/2} \sim 10^{19} - 10^{21} \, yrs$ 

**0**νββ



Proposed in 1937 by Ettore Majorana Not observed yet  $T_{1/2} \ge 10^{25}$  y

$$(N,Z) \to (N-2,Z+2) + e^- + e^-$$

 $\Delta L=2$ : total lepton number violation (LNV)

nuclei are a laboratory to study lepton number violation at nuclear energies

## **Physics of Neutrinoless Double Beta Decay**

#### B-L conserved in Standard Model

 $0\nu\beta\beta$  is the most powerful and comprehensive probe of Lepton Number Violation, sensitive to new physics over a vast range of scales, with far reaching implications

#### Observation of $0\nu\beta\beta$ would be direct evidence for new physics

Demonstrate that neutrinos are Majorana fermions Probe new mechanism of neutrino mass generation, reaching up to GUT scale  $V_{U_{i}} = V_{i}$  Nucleus Z+2 Nuclear Process

Probe key **ingredient needed to generate cosmic baryon asymmetry** via leptogenesis. Sakharov conditions. Baryon number violation
 Out of thermal equilibrium
 CP violation

#### Proposed experiments have discovery potential in a variety of mechanisms

### **Double Beta Decay Mechanism**



10-3

 $10^{-10}$ 

inverted

hierachy

 $10^{-3}$ 

 $10^{-2}$ 

parameters

(90% CL)

 $10^{-3}$ 

 $10^{-2}$ 

 $10^{-1}_{m_{\text{lightest}}}[eV]$ 

normal

 $m_{\text{lightest}}[eV]$ 

hierachy

 $10^{-1}$ 

### Neutrinoless Double Beta Decay ( $0\nu\beta\beta$ )



Nuclear Process



$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

G are phase space factors





**0**<sub>V</sub> mode: hypothetical process only if  $M_v \neq 0$  AND  $v = \overline{v}$ 

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2 \qquad G_{0\nu} \sim Q^5$$

### **Observable Half Life of \mathbf{0}\nu\beta\beta**

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$
$$T_{1/2}^{0\nu} = 0\nu\beta\beta \text{ half-life}$$
$$G^{0\nu}(Q,Z) = \text{phase space factor } (\propto Q^5)$$
$$M^{0\nu} = \text{nuclear matrix element}$$
$$\langle m_{\beta\beta} \rangle = \text{effective } \beta\beta \text{ neutrino mass}$$
$$m_e = \text{electron mass}$$



#### Half lives are determined by

- phase space factor (high-Q value desirable)
- nuclear matrix elements

#### Nuclear matrix elements are calculated theoretically with different models

#### Effective neutrino mass can be inferred from half-live measurement

$$T_{1/2}^{0\nu}$$
 sensitivity  $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$ 

#### 0vββ source with high isotopic abundance

Detector with high detection efficiency good energy resolution low-background

#### Experiment

long exposure time large total mass of isotope

- *a* = source isotopic abundance
- $\epsilon$  = detection efficiency
- M =total mass
  - t = exposure time
  - b = background rate at 0νββ energy
- $\delta E$  = energy resolution

### Search for 0vßß - Observable Signature



### **Nuclear Structure in Double Beta Decay**

Nuclear structure connects experimental rates to parameters of interaction, requires mechanism dependent nuclear matrix elements.



range of  $T_{1/2}$  depending on nuclear matrix element

#### Example: <sup>130</sup>Te

Q(<sup>130</sup>Te)=2527 keV, good Q-value above Compton edge of 2615 keV line High natural abundance

Karsten Heeger, Yale University

### **Isotopes and Sensitivity to** <m<sub>νββ</sub>>



# Isotopes have comparable sensitivities in terms of rate per unit mass

Ref: Robertson MPL A28, 2013, 1350021 arXiv:1301.1323

#### An experimental challenge of rare events

Most measured half lives of  $2\nu\beta\beta$  are O(10<sup>21</sup>) years

- Compare to lifetime of Universe: 10<sup>10</sup> years
- Compare to Avogadro's number 6 x 10<sup>23</sup>
- Mole of isotope will produce ~ 1 decay/day

If it exists, half lives of  $0\nu\beta\beta$  would be longer (<sup>130</sup>Te limits is > 10<sup>24</sup> years)

| Half life          | Signal           |  |
|--------------------|------------------|--|
| (years)            | (cts/tonne-year) |  |
| 10 <sup>25</sup>   | 500              |  |
| 5x10 <sup>26</sup> | 10               |  |
| 10 <sup>27</sup>   | 1                |  |
| 10 <sup>28</sup>   | 0.1              |  |

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon_{ff} \cdot I_{abundance} \cdot Source Mass \cdot Time$$
 background free 
$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon_{ff} \cdot I_{abundance} \cdot \sqrt{\frac{Source Mass \cdot Time}{Bkg \cdot \Delta E}}$$
 background limited

backgrounds do not always scale with detector mass

### **Sensitivity vs Background**





## **0vββ Backgrounds and Mitigation**

#### **Potential Backgrounds**

- Primordial, natural radioactivity in detector components: U, Th, K
- Backgrounds from **cosmogenic activation** while material is above ground

( $\beta\beta$ -isotope or shield specific, <sup>60</sup>Co, <sup>3</sup>H... )

- Backgrounds from the **surrounding environment**:

external  $\gamma$ , ( $\alpha$ ,n), (n, $\alpha$ ), Rn plate-out, etc.

- µ-induced backgrounds generated at depth:

Cu,Pb(n,n'  $\gamma$ ),  $\beta\beta$ -decay specific(n,n),(n, $\gamma$ ), direct  $\mu$ 

- 2 neutrino double beta decay (irreducible, E resolution dependent)

### **Reduce Backgrounds**

- ultra-pure materials
- shielding

- ...

- deep underground

**Discriminate Backgrounds** 

- energy resolution
- tracking (even topology)
- fiducial fits
- pulse shape discrimination (PSD)
- particle ID



Combining detection techniques for improved event identification and background rejection

### $\mathbf{0} \mathbf{v} \boldsymbol{\beta} \boldsymbol{\beta}$ Efforts Worldwide

## <sup>130</sup>Te

- Bolometer-based searches
- $T_{1/2} > 2.8 \times 10^{24} \text{ y}$
- Cuoricino / CUORE-0 / CUORE



<sup>76</sup>Ge

- High-purity germanium detectors
- $T_{1/2}$  > 2.1 × 10<sup>25</sup> y • GERDA/ MAJORANA



### <sup>136</sup>Xe

- Liquid Xe scintillation / TPC
- $T_{1/2}$  > 2.6 × 10<sup>25</sup> y
- Kamland-Zen, EXO-200, nEXO



### NEMO-3/ SuperNEMO

 Source foils with tracking and calorimetry
 Half-lives on <sup>48</sup>Ca,

<sup>82</sup>Se, <sup>96</sup>Zr, ...

#### Pushing experimental techniques to an extreme:

coldest space in Universe, cleanest radiation detector, deepest laboratory, cleanest tracking chamber, etc...

### $\textbf{0}\nu\beta\beta$ Efforts Worldwide

| Experiment      | Isotope | Isotopic Mass     | Start of Operations    |
|-----------------|---------|-------------------|------------------------|
| CUORE0<br>CUORE | 130     | ~11 Kg<br>~210 Kg | 2013 (Running)<br>2015 |
| EXO-200         | 136     | ~200 Kg           | 2011                   |
| GERDA I/II      | 76      | ~34 Kg            | 2011/15                |
| KamLAND-Zen     | 136     | ~300 Kg           | 2012 (Running)         |
| MAJORANA        | 76      | ~30 Kg            | 2015                   |
| NEXT            | 136     | ~100 Kg           | 2016                   |
| SNO+            | 130     | ~800 Kg           | 2016 ?                 |
| SuperNEMO       | 82      | ~7 Kg             | 2016                   |

#### selection of most prominent efforts

### **Recent Results - Gerda Phase 1 (76Ge)**



- 87% enriched <sup>76</sup>Ge detectors in LAr
- $Q_{\beta\beta} = 2039 \text{ keV}$
- 14.6 kg of 86% enriched Ge detectors from H-
- M, IGEX (4.8 keV FWHM @  $Q_{\beta\beta}$
- 3 kg of 87% enriched BEGe enriched detectors (3.2 keV FWHM @  $Q_{\beta\beta}$ )
- Single-site, multi-site pulse shape discrimination



- 21.6 kg-year exposure
- Frequentist T<sub>1/2</sub> > 2.1 x 10<sup>25</sup> y (90% CL)
- Bayesian
  T<sub>1/2</sub> > 1.9 x 10<sup>25</sup> y (90% CL)
- GERDA Collaboration, PRL 111 (2013) 122503 Eur. Phys. J. C (2014) 74:2764

→G. Benato



GERD

### **Recent Progress - Majorana Dem. (76Ge)**





 MJD Prototype module installed and taking data in shield since July 2014. Simulations and analysis of data are underway.



**Ionization** 

One detector spectrum within a string mounted in the prototype cryostat and inside shield. FWHM 3.2 keV at 2.6 MeV



- Module 1 with more than half of all enriched detectors will go in-shield in a few days and start operation soon.
- Assembly of strings for Module 2 is underway. Anticipate completion by end of 2015.
- Expecting data from the completed Demonstrator in 2016.

### Recent Results - EXO-200 (136Xe)

#### Ionization Scintillation

- Enriched Liquid Xe in TPC
  - Q<sub>ββ</sub>=2457.8 keV
  - 200 kg of 80.6 % enriched<sup>136</sup>Xe
  - 75.6 kg fiducial mass,
  - 100 kg years exposure
  - Combine Scintillation-Ionization signal for improved resolution (88 keV FWHM @ Q<sub>ββ</sub>)
  - Single site Multisite discrimination
    T 1/2 > 1.1 x 10<sup>25</sup> y (90% CL)





→M. Tarka

Karsten Heeger, Yale University

### **Recent Results - KamLAND-Zen**

- <sup>enr</sup>Xe in liquid scintillator, balloon of R=1.5 m
- Q<sub>ββ</sub>=2457.8 keV
- Phase 1
  - 179 kg (2.44% by Xe wt.) 91.7% enriched<sup>136</sup>Xe
  - R=1.35 m fiducial cut
  - 213.4 days, with 89.5 kg years exposure
  - 400 keV FWHM @  $Q_{\beta\beta}$
  - evidence for <sup>110m</sup>Ag contamination
    T<sub>1/2</sub> > 1.9 x 10<sup>25</sup> y (90% CL)
- Phase 2
  - 383 kg (2.96% by Xe wt.)
  - R=1 m fiducial cut
  - 114.8 days, with 27.6 kg years exposure
  - <sup>110m</sup>Ag contamination reduced by x10
    T<sub>1/2</sub> > 1.3 x 10<sup>25</sup> y (90% CL)

### Combined (1&2) T 1/2 > 2.6 x 10<sup>25</sup> y (90% CL)

KamLAND ZEN Collaboration, Shimizu, Neutrino 2014

CIPANP, May 19, 2015





 $\rightarrow$ B. Berger

#### **Scintillation**

### Recent Results - CUORE-0 (130Te)

#### **Phonons**







- Q<sub>ββ</sub>=2527.5 keV
- Array of 52 5x5x5 cm<sup>3</sup> TeO<sub>2</sub> crystals
- 9.8 kg years exposure
- FWHM of 5.1 keV

 $T_{1/2} > 2.7 \text{ x } 10^{24} \text{ y } (90\% \text{ CL}) \text{ CUORE-0}$ 

#### T<sub>1/2</sub> > 4.0 x 10<sup>24</sup> y (90% CL) CUORE-0 & Cuoricino arXiv: 1504.2454

→T. O'Donnell

### **Recent Progress - CUORE (130Te)**

# All 988 bolometers (206 kg of <sup>130</sup>Te) built and assembled into towers





### Cryostat Commissioning Underway



#### Detector installation expected in 2015

Karsten Heeger, Yale University

## No 0vββ Signal Yet!

#### Limits on Effective Neutrino Mass



#### **CUORE-0** Results

 $\langle m_{\beta\beta} \rangle < 270 - 650 \text{ meV}$ 

1) IBM-2 (PRC 91, 034304 (2015))
 2) QRPA (PRC 87, 045501 (2013))
 3) pnQRPA (PRC 024613 (2015)
 4) ISM (NPA 818, 139 (2009))
 5) EDF (PRL 105, 252503 (2010))

Including additional Shell-Model NME

 $\langle \mathbf{m}_{\beta\beta} \rangle < 270 - 760 \text{ meV}$ 

IBM-2 (PRC 91, 034304 (2015))
 QRPA (PRC 87, 045501 (2013))
 pnQRPA (PRC 024613 (2015))
 Shell Model (PRC 91, 024309 (2015))
 ISM (NPA 818, 139 (2009))
 EDF (PRL 105, 252503 (2010))

#### Karsten Heeger, Yale University

→J. Engel

### **Towards a Next-Generation Experiment**

#### **Goals/Requirements**

- Expect signals of 1 count/tonne-year for half-lives of 10<sup>27</sup> years, or  $< m_{\beta\beta} > \sim 15$  meV.
- For discovery aim for S:B of better than 1:1 in region of interest
- Region of interest can be single dimension (e.g. energy) or multi-dimensional (e.g. energy+fiducial)

#### **Next Steps**

International collaborations are building on current efforts using multiple isotopes:

- <sup>76</sup>Ge: large Ge experiment, HPGE crystals, ton-scale
- <sup>82</sup>Se: SuperNEMO, tracking and calorimeter, 100kg scale
- <sup>136</sup>Xe:
  - nEXO, liquid TPC, 5 tonnes
  - NEXT/BEXT, high pressure gas TPC, tonne-scale
  - KamLAND-Zen, scintillator
- <sup>130</sup>Te:
  - CUPID, bolometers+scintillation/Cherenkov light
  - SNO+ phase II, scintillator
- other efforts worldwide
- staged approach possible, some experiments pursue isotopic enrichment

## Next Steps - SuperNEMO (82Se)

•Thin foil with tracking and calorimeter, based on successful NEMO3 detector.

- <u>Planar</u> and <u>modular</u> design: ~ 100 kg of enriched isotopes (20 modules × ~5-7 kg)
- •Starting with single Demonstrator module, (7 kg of <sup>82</sup>Se) to show scalability
- •T<sub>0v1/2</sub> > 6.5 x10<sup>24</sup> y  $\rightarrow \langle mv \rangle < 0.20$  0.40 eV @ (90 % C.L.)

### •SuperNEMO

- $\bullet$  100 kg of  $^{82}Se$  running for 5 years
- $T_{0\nu1/2}$  > 1 x 10^{26} y (90 % C.L.)  $\langle m\nu\rangle$  < 40-100 meV
- $T_{0v1/2} = 2 \times 10^{25} \text{ y} (5\sigma)$

#### **Demonstrator (1 module):**

Source (40 mg/cm<sup>2</sup>) 4 x 3 m<sup>2</sup>

Tracking : drift chamber ~2000 cells in Geiger mode

- **Calorimeter: scintillators + PMTs** 
  - ~550 PMTs+scint. blocks
- Passive water shield

20 Modules 100 kg



I DD Possilution Monting

### Next Steps - Ge Experiment (76Ge)

- MAJORANA and GERDA are working towards the establishment of a single international <sup>76</sup>Ge  $0\nu\beta\beta$  collaboration. (Name not set: Ge1T, LSGe, ...)
- Envision a phased, stepwise implementation;

e.g.  $250 \rightarrow 500 \rightarrow 1000 \text{ kg}$ 5 yr 90% CL sensitivity:  $T_{1/2} > 3.2 \cdot 10^{27} \text{ yr}$ 10 yr 3 $\sigma$  discovery:  $T_{1/2} \sim 3 \cdot 10^{27} \text{ yr}$ 

- Moving forward predicated on *demonstration* of projected backgrounds by MJD and/or GERDA
- Anticipate down-select of best technologies, based on results of the two experiments



## **Next Steps - CUPID**

### Phonons Light

#### phonon+photon





- Cherenkov light or scintillation to distinguish  $\alpha$ from  $\beta/\gamma$  (<sup>130</sup>TeO<sub>2</sub>, Zn<sup>82</sup>Se, <sup>116</sup>CdWO<sub>4</sub>, and Zn<sup>100</sup>MoO<sub>4</sub>)
- More rejection power needed: 99.9%  $\alpha$  background suppression. Light detector R&D for better resolution.
- Background free search.

 $m_{\beta\beta} \sim (M \cdot t)^{-1/2}$ , not  $(M \cdot t)^{-1/4}$ 





## **Next Steps - CUPID**

### Phonons Light

- Next-generation bolometric tonne-scale experiment. Based on the CUORE design, CUORE cryogenics
  - Largest cryostat and DU built; mature technology
- 988 enriched (90%) crystals, PID with light detection
  - TeO<sub>2</sub> : phonons + Cherenkov detector
  - Options: ZnSe, ZnMoO<sub>4</sub>, CdWO<sub>4</sub> (phonons +scintillation)
- Aim for zero-background measurement
- Sensitivity to inverted hierarchy region
  - CUORE geometry and background model
  - 99.9% a rejection @ >90% signal efficiency (5 $\sigma$  separation of a and  $\beta$ )
  - 5 keV FWHM resolution
  - Aim for nearly zero background measurement: background goal <0.02 events / (ton-year)</li>
  - Half-life sensitivity (2-5)×10<sup>27</sup> years in 10 years (3 $\sigma$ )
  - $-m_{\beta\beta}$  sensitivity 6-20 meV (3 $\sigma$ )



R. Artusa et al., Eur.Phys.J. **C74**, 3096 (2014) White papers: arXiv:1504.03599, arXiv:1504.03612

## Next Steps - SNO+ (130Te)

- 3% loading of Te already demonstrated
- Detector response model from Phase I predicts Phase II response

Plug-in replacement of SNO+ PMTs with R5912-HQEs more than doubles light yield for Phase II Additional wavelength-shifter R&D could further improve this

Containment bag R&D necessary to achieve cleanliness
 Can leverage KamLAND-Zen and BOREXINO knowledge

Phase II:  $T_{1/2} > 7 \times 10^{26}$  y (90% CL, natural)  $T_{1/2} > 10^{27}$  y (90% CL, enriched)  $T_{1/2} > 4 \times 10^{26}$  y (3 $\sigma$ , natural)

External  $\gamma$  and <sup>8</sup>B backgrounds are fixed (but fewer in ROI because of increased light yield)





#### →N. Barros

#### **Scintillation**

- 5 tonnes of <sup>enr</sup>Xe
- nEXO 5 yr 90% CL sensitivity:  $T_{1/2} > 6.6 \cdot 10^{27}$  yr
- LXe homogeneous imaging TPC similar to EXO-200:
  - baseline: install at SNOLAB (cosmogenic background reduced wrt EXO-200)
  - simultaneous measurement: energy, spatial extent, location, particle ID
  - Multi-parameter approach improves sensitivity: strengthens proof in case of discovery
  - -inverted hierarchy covered with a well proven detector concept
  - -possible later upgrade for Ba retrieval/tagging: start accessing normal hierarchy





### Next Steps - KamLAND Zen (130Xe)

#### **Scintillation**



### Next Steps - BEXT (136Xe)

#### Ionization Scintillation





**NEW** - 10 kg prototype at the LSC



- HP<sup>136</sup>Xe TPC + EL for high E- resolution + tracking capability
- Tonne-scale sensitivity:  $m_{\beta\beta} < 15 \text{ meV}$  in 10 t-y



### **Next Frontier - Future Searches for 0vββ**

Ton scale experiments will make discovery if

- m<sub>lightest</sub> > 50 meV (irrespective of ordering)

- spectrum has inverted ordering



#### Karsten Heeger, Yale University

#### CIPANP, May 19, 2015

#### 37

significant discovery potential

*improvement of x100 over* 

current results

## Summary

Neutrinoless double beta  $(0\nu\beta\beta)$  is the most powerful and comprehensive probe of lepton number violation ( $\Delta L=2$ ).

Observation would establish lepton number violation, demonstrate that neutrinos are Majorana, and indicate physics beyond Standard Model.

Current experiments probe half lives of 10<sup>25</sup>-10<sup>26</sup> years and are demonstrating background reduction and scalability of experimental techniques. Expect new results in next 2-3 years.

# Tonne-scale experiments have significant discovery potential, reaching half lives of 10<sup>27</sup>-10<sup>28</sup> years.

Ready for a world-wide program of  $0\nu\beta\beta$  searches with different techniques and isotopes, underground locations are available.

# We are poised to look for $0\nu\beta\beta$ down to $\langle m_{bb} \rangle \sim 15$ meV, covering the inverted hierarchy.

#### Exciting years ahead!

Many thanks to all colleagues who contributed with slides to this talk





