Searching for neutrinoless double beta decay of ¹³⁰Te with CUORE

Ke Han Yale University Oct 29, 2015

DNP 2015 Santa Fe, NM

Double beta decay in experiments

- Extremely rare events $T_{1/2} > 10^{24}$ year.
- Experimentally try to search for a peak on the spectrum of total energy of electrons.
- ¹³⁰Te: isotopically abundant and favorable in terms of half-life requirement

Large mass bolometer

Bolometer: measure the energy via temperature change

$$\Delta T = \frac{E}{C} \qquad \tau \sim \frac{C}{G}$$

CUORE: TeO₂ crystal

5×5×5 cm³, 750 g

 $\Delta T = 0.1 \text{ mK/MeV}$ at 10 mK base temperature

Arrays of TeO₂ bolometers

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial v \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base tempearture in a custom dilution refridgrator
- Gran Sasso underground lab (LNGS), Italy

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial v \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base tempearture in a custom dilution refridgrator
- Gran Sasso underground lab (LNGS), Italy

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial v \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base tempearture in a custom dilution refridgrator
- Gran Sasso underground lab (LNGS), Italy

CUORE-0

- The first CUORE tower assembled with CUORE standards
 - Cleaning components
 - Assembly procedure
- Tower Properties
 - 52 crystals, total mass 39 kg
 - Total ¹³⁰Te mass 11 kg
- CUORE-0 tower was installed in the original Cuoricino cryostat.
- Data taking: March 2013 to Aug 2015.
- 9.8 kg \cdot yr of ¹³⁰Te exposure
- Reached CUORE goal of 5 keV FWHM around Q-value

CUORE-0

- The first CUORE tower assembled with CUORE standards
 - Cleaning components
 - Assembly procedure
- Tower Properties
 - 52 crystals, total mass 39 kg
 - Total ¹³⁰Te mass 11 kg
- CUORE-0 tower was installed in the original Cuoricino cryostat.
- Data taking: March 2013 to Aug 2015.
- 9.8 kg \cdot yr of ¹³⁰Te exposure
- Reached CUORE goal of 5 keV FWHM around Q-value

Detector performance: CUORE-0 vs. Cuoricino

- Channel and dataset independent fit
- The 5 keV CUORE goal has been reached

DNP 2015 — Santa Fe, NM

 $\sim \times 6$ reduction in the alpha

continuum region

CUORE-0 results

• We find no evidence for $0\nu\beta\beta$ decay of ¹³⁰Te: $T_{1/2} > 2.7 \times 10^{24}$ yr (90% C.L.)

Fitted background: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) counts/keV/kg/yr Best-fit decay rate: $\Gamma^{0\nu\beta\beta}(^{130}\text{Te}) = 0.007 \pm 0.123$ (stat.) ± 0.012 (syst.) $\times 10^{-24}$ yr⁻¹

Combining CUORE-0 and Cuoricino

- Combination of the CUORE-0 result with the existing 19.75 kg · yr of ¹³⁰Te exposure from Cuoricino
- The combined half-life limit is

 $T_{1/2} > 4.0 \times 10^{24}$ yr (90% CL)

Effective Majorana Mass

m_{ββ} <(270-650) meV

Building CUORE: Detector array assembly

- All 19 ultraclean towers assembled by summer 2014.
- From ~10000 components
- Inside 5 glove boxes
- 988/988 thermistors
- 988/988 heaters

Cryogenic system commissioning phase 1: individual systems test

- Outer/Inner vacuum chamber
- Cryostat
 - 32 K at the 40K stage
 - 3.3 K at the 4K stage
- Dilution Unit
 - Lowest temperature: 4.95 mK

DU in a test cryostat

Flanges of

CUORE cryostat

Cryogenic system commissioning phase 2: system integration

DNP 2015 — Santa Fe, NM

Cryogenics milestones

Summary and outlook

- CUORE-0 reached energy resolution and background rate requirement.
- Null $\partial v \beta \beta$ result published in PRL.
- $2\nu\beta\beta$ analysis, instrumentation, and dark matter search papers in the pipeline.
- CUORE, with 206 kg of ¹³⁰Te and 5 keV resolution, is able to reach 50-130 meV effective Majorana mass.
- All detectors were assembled successfully.
- CUORE cryostat reached base temperature of ~ 6 mK.
- CUORE operation expected in early 2016.
- CUPID, CUORE upgrade with particle ID will cover the inverted hiearchy band.

The CUORE Collaboration

UNIVERSITY OF

DNP 2015 — Santa Fe, NM

Ke Han, Yale University

Background fluctuations

- We evaluated the statistical likelihood of observed excess and deficits in data
- Kolmogorov-Smirnov test shows data are consistent with zero-rate hypothesis
- > None of the positive or negative fluctuations have signal significance > 3σ
- Probability to observe a fluctuation anywhere in the ROI as big as largest is ~ 10% (i.e., accounting for trials factor)

Systematics

TABLE I. Systematic uncertainties on $\Gamma_{0\nu}$ in the limit of zero signal (Additive) and as a percentage of nonzero signal (Scaling).

	Additive (10^{-2})	$^{24} \mathrm{y}^{-1}$) Scaling (%)
Lineshape	0.007	1.3
Energy resolution	0.006	2.3
Fit bias	0.006	0.15
Energy scale	0.005	0.4
Bkg function	0.004	0.8
Signal normalization		0.7%

- ► For each systematic, we run toy MC expts to evaluate bias on fitted 0v88 decay rate
- Bias is parameterized as p0 + p1×Γ, where p0="additive" and p1="scaling"
- Signal lineshape: Used variety of different lineshapes to model signal
- Energy resolution: Apply 1.05±0.05 correction to calibration-derived resolution
- Fit bias: Effect of using unbinned extended ML fit to extract values
- Energy scale:Assign 0.12 keV uncertainty derived from peak residuals in physics spectrum
- ▶ <u>Bkg function</u>: Treated choice of 0-, 1-, 2-order polynomial as discrete nuisance parameter

TABLE I. Systematic uncertainties on $\Gamma_{0\nu}$ in the limit of zero signal (Additive) and as a percentage of nonzero signal (Scaling).

	Additive (10	$^{-24} y^{-1}$) Scaling (%)
Lineshape	0.007	1.3
Energy resolution	0.006	2.3
Fit bias	0.006	0.15
Energy scale	0.005	0.4
Bkg function	0.004	0.8
Signal normalization	l	0.7%

After accounting for systematic uncertainties we report the Bayesian limits:

 $\Gamma^{0\nu\beta\beta}$ (¹³⁰Te) < 0.25 × 10⁻²⁴ yr⁻¹ (90% C.L., stat.+syst.)

 $T_{1/2}^{0\nu\beta\beta}$ (130Te) > 2.7 × 10²⁴ yr (90% C.L., stat. + syst.)

Background reduction: from CUORE-0 to CUORE

CUORE background in ROI

- 1. New cryostat with radio-pure materials
 - ightarrow negligible gamma contributions
- 2. More effective self-shielding
 - → Copper surface background can be reduced below background goal.
- 3. More effective anti-coincidence
 - \rightarrow negligible surface alpha from crystals.

Detection channels

