CUORE: A Search for Neutrinoless Double Beta Decay

Jeremy Cushman WIDG, 2/24/15

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

The early days

- **Pauli** proposes the idea of the neutrino to conserve energy and momentum in beta decays.
- Fermi creates a formal theory of beta decay incorporating the neutrino
- Goeppert-Mayer postulates double beta decay: if particles can decay by emitting an electron and a neutrino, they should also be able to emit 2 electrons and 2 neutrinos
- Majorana proposes that the neutrino and antineutrino may be the same particle; this would not have a noticeable effect on beta decay
- Furry postulates that if neutrinos are their own antiparticles, then atoms should be able to decay by emitting just two electrons and no neutrinos

Double beta decays

Ordinary (2νββ) Observed in several isotopes

 $2n \to 2p + 2e^- + 2\overline{\nu}_e$ ${}^{A}_{Z}X \to {}^{A}_{Z+2}X' + 2e^- + 2\overline{\nu}_e$

Neutrinoless (0νββ) Hypothesized if neutrinos are Majorana fermions

Can we see it?

- Double beta decay is a second order process (highly suppressed)
- We have no chance of seeing it in elements for which single beta decay is allowed
- We need to look for elements where double beta decay is allowed and single beta decay is forbidden

Detecting 0vBB

- Measure the summed energy of both electrons released in the decay
- Requires full containment and accurate energy reconstruction of electrons

Double beta decay spectrum

Ordinary (2νββ): Some energy in electrons, some energy escapes with neutrinos Neutrinoless (0νββ): Summed energy of electrons is always equal to *Q*-value, no energy escapes

Observation of $0\nu\beta\beta$ would be the first evidence of lepton number violation and unambiguously establish the Majorana nature of the neutrino

How rare?

- Most measured half-lives for $2\nu\beta\beta$ are O(10²¹) years
 - Compare to lifetime of the universe: 10¹⁰ years
 - Compare to Avogadro's number: 6 × 10²³
 - A mole of the isotope will produce ~1 decay/day
- If it exists, the half-lives of $0\nu\beta\beta$ would be much longer
 - ¹³⁰Te $0\nu\beta\beta$ limit is > 10²⁴ years*
 - A mole of ¹³⁰Te produces < 1 decay/year
 - A half-life of 10²⁶ years requires 32 kg of ¹³⁰Te to see 1 decay/year

8

*E. Andreotti et al., Astroparticle Physics 34 (2011) 822–831

amedes avaguato

Half-lives

 $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$ $T_{1/2}^{0\nu} = 0\nu\beta\beta \text{ half-life}$ $G^{0\nu}(Q,Z) = \text{phase space factor } (\propto Q^5)$ $M^{0\nu} = \text{nuclear matrix element}$ $\langle m_{\beta\beta} \rangle = \text{effective } \beta\beta \text{ neutrino mass}$ $m_e = \text{electron mass}$

- Shorter half-lives are easier to measure, so choose an element with a high phase space factor (high Q-value for 0vββ) and high nuclear matrix element
- Nuclear matrix element is calculated theoretically, with different models differing by factors of ~2
- Effective $\beta\beta$ neutrino mass gives hints about absolute neutrino mass

Detector sensitivity

$$T_{1/2}^{0\nu}$$
 sensitivity $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$

- *a* = source isotopic abundance
- ϵ = detection efficiency
- M =total mass
 - t = exposure time
 - *b* = background rate at $0\nu\beta\beta$ energy
- δE = energy resolution
- Choose a source with a high **isotopic abundance** of the $0\nu\beta\beta$ emitter
- Create a detector with a high detection efficiency and good energy resolution in a low-background environment
- Run experiment for a long **exposure time** with a large **total mass** of the source isotope

Neutrino mass

Using a measured $0\nu\beta\beta$ half-life, we can deduce an effective Majorana neutrino mass:

arXiv:1301.1340 (2013)

WIDG Seminar, 2/24/15

$0\nu\beta\beta$ efforts

¹³⁰Te

- Bolometer-based searches: Cuoricino/ CUORE-0/CUORE
- Loaded organic scintillator: SNO+
- $T_{1/2} > 2.8 \times 10^{24} \text{ y}$

¹³⁶Xe

- Xe scintillation: Kamland-Zen
- Liquid TPC & scintillation: EXO-200, nEXO
- Gas TPC: NEXT
- $T_{1/2} > 2.6 \times 10^{25} \text{ y}$

⁷⁶Ge

• High-purity germanium detectors: GERDA/ MAJORANA • $T_{1/2} > 2.1 \times 10^{25}$ y

NEMO-3/ SuperNEMO

Source foils with tracking and calorimetry
Half-lives on ⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ...

Advantages of CUORE

- Excellent energy resolution of TeO₂ bolometers (0.2% FWHM resolution at 2615 keV)
- ¹³⁰Te: High natural abundance (no enrichment required), good Q-value (above Compton edge of 2615 keV line), relatively accessible 0vββ half-life

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

CUORE

Cuoricino to CUORE

Bolometric detection

- Bolometers are operated at ~10 mK, so that single particle energy deposits cause a measurable spike in temperature
- Temperature is measured by measuring voltage across temperaturedependent resistors (thermistors)
- Each TeO₂ bolometer crystal is instrumented with a resistive heater and a Neutron Transmutation Doped germanium (NTD-Ge) thermistor.

CUORE-0

- One 39 kg tower of TeO₂ crystals, which serve as both the 0vββ sources and as bolometric detectors
- Total ¹³⁰Te mass of 11 kg
- Running in small dilution fridge for the past year
- Serves as a test of the CUORE materials and assembly procedure, and as an experiment of its own
- Unblinding and 0vββ limit to be released soon

CUORE

- The Cryogenic Underground Observatory for Rare Events (CUORE) will search for 0vββ in ¹³⁰Te
- Located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy
- CUORE is composed of 988 TeO₂ crystals (total mass of 741 kg with 206 kg of ¹³⁰Te)
- 19 times the mass of CUORE-0
- Will be run in a new custom-built dilution refrigerator with much lower backgrounds

Ancient Roman lead

- Radioactive shielding can harm experiment as much as it helps
- All lead contains radioactive ²¹⁰Pb (half-life = 22 years) when mined
- Lead from a Roman shipwreck is used for innermost lead shielding

http://www.nature.com/news/2010/100415/full/news.2010.186.html

LNGS

CUORE family of experiments are located under the Gran Sasso (literally, *Great Stone*) mountain in Central Italy

https://commons.wikimedia.org/wiki/Image:Il_Gran_Sasso_d%27Italia,_il_paretone_nord.JPG

LNGS experiment halls

- LNGS is composed of 3 large experimental halls
- Under about 1400 m of mountain rock (roughly factor of 10⁶ reduction in cosmic ray muons, or ~3000 m.w.e.)
- Accessed by exit from highway tunnel inside the mountain

http://www.fix.net/wreil/Gran-Sasso-Trip-Technical.htm

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

Calibration

- Voltage signals from the thermistors must be calibrated to determine the energy of each event
- Every bolometer must be calibrated independently
- A two-step calibration process will be used:
 - 1. The thermistor gain is stabilized over time
 - 2. Thermistor readings are calibrated to absolute energies

Gain stabilization

- The gain of each bolometer depends on the baseline, which is temperature-dependent, requiring *in situ* calibration
- Periodic fixed-energy heater pulses are used to establish a gain vs. baseline temperature curve
- All thermistor signal amplitudes can then be converted to arbitrary-unit gain-corrected stabilized amplitudes

Monthly calibration

- Monthly, the crystals are exposed to $^{232}\text{Th}\ \gamma\text{-ray}$ sources
- This provide several strong peaks in the energy spectrum, including a ²⁰⁸Tl peak at 2615 keV, very close to the 0vββ Q-value
- An energy vs. stabilized amplitude curve is determined for each channel

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

Calibration requirements

- Bolometers require independent *in situ* energy calibration
- Calibration sources must be inside cryostat only during calibration
- Inserting sources must not affect bolometer temperature
- Procedure must be stable over expected 5-year lifetime of the experiment
- Background contribution of calibration hardware must be low («0.01 counts/keV/kg/year)

Calibration strings

- Twelve source strings will be lowered into the cryostat during calibration periods
- Strings move under their own weight
- Cooled from 300 K to the bolometer region at ~10 mK

Each source string contains 25 source capsules of thoriated tungsten wire (containing ²³²Th), 8 weight capsules, and a PTFE guide ball

Motors and spools

Each source string is wound around a spool and connected to a motor, which turns the spool to raise and lower the calibration sources

Motion Boxes

The motors are contained within four motion boxes, each of which controls three source strings

S-tubes

Each source string is guided from 300 K to 4 K in a PTFE-coated stainless steel bellows ("S-tube") anchored to the 40 K plate

Bends in the tube allow the sources to thermalize with the tube

Thermalizers

Source strings are cooled to 4 K by mechanical squeezing before being lowered further into the cryostat

Inner guide tubes

6 source strings (3.5 Bq each) are guided between the bolometer towers in copper tubes to illuminate the inner detectors

Top-down view of detector towers with inner guide tube placement

Outer guide tubes

Thermalization

String production

- Inner source strings produced at UW-Madison
- Outer source strings produced at Yale

Thermalizer force

- For testing, a Si diode thermometer made to imitate a copper source capsule was attached to the moving block and squeezed by the thermalizer. Single cooldown 22.3 N 31.8 N 40.6 N 14.1 N 31.8 N Si Diode Temperature [K] Temperature [K]
 - 2000 3000 4000 5000 6000 7000 8000 5565 5570 5575 5580 5585 5590 5595 0 1000 5560 5600 Time [s] Time [s]
- A force of 31.8 N cools the capsule to base temperature in approximately 30 seconds.

Base temperature effect

 Cryostat base temperature was measured during deployment down to 10 mK region

• Very little effect was seen on the base temperature during string cooling and lowering

String extraction

• Cryostat base temperature was also measured during string extraction

• Very slow raising speed is required when sources are in 10 mK region due to frictional heating

Cold test results

- We can lower strings from 300 K down to base temperature without large disruption to the cryostat
- Capsules can be cooled to 4 K with mechanical squeezes in very short time scales (under 1 minute)
- With a ~3 hour deployment (0.4 mm/s string speed) after string thermalization at 4 K, the maximum effect on base temperature was a 5% deviation from baseline
- With a very slow string extraction in the detector region, base temperature effects can be kept very small (3% deviation from baseline)

Outline

- History and background
- CUORE detector and cryostat
- Calibration
 - Analysis
 - Detector Calibration System
- Status and prospects

CUORE-0 first results

Eur. Phys. J. C (2014) 74:2956 DOI 10.1140/epjc/s10052-014-2956-6 The European Physical Journal C

Regular Article - Experimental Physics

Initial performance of the CUORE-0 experiment

D. R. Artusa^{1,2}, F. T. Avignone III¹, O. Azzolini³, M. Balata², T. I. Banks^{2,4,5}, G. Bari⁶, J. Beeman⁷, F. Bellini^{8,9}, A. Bersani¹⁰, M. Biassoni^{11,12}, C. Brofferio^{11,12}, C. Bucci², X. Z. Cai¹³, L. Canonica², X. G. Cao¹³, S. Capelli^{11,12}, L. Carbone¹², L. Cardani^{8,9}, M. Carrettoni^{11,12}, N. Casali², D. Chiesa^{11,12}, N. Chott¹, M. Clemenza^{11,12}, C. Cosmelli^{8,9}, O. Cremonesi^{12,a}, R. J. Creswick¹, I. Dafinei⁹, A. Dally¹⁴, V. Datskov¹², M. M. Deninno⁶, S. Di Domizio^{10,15}, M. L. di Vacri², L. Ejzak¹⁴, D. Q. Fang¹³, H. A. Farach¹, M. Faverzani^{11,12}, G. Fernandes^{10,15}, E. Ferri^{11,12}, F. Ferroni^{8,9}, E. Fiorini^{11,12}, S. J. Freedman^{4,5,b}, B. K. Fujikawa⁵, A. Giachero^{11,12}, L. Gironi^{11,12}, A. Giuliani¹⁶, J. Goett², P. Gorla², C. Gotti^{11,12}, T. D. Gutierrez¹⁷, E. E. Haller^{7,18}, K. Han⁵, K. M. Heeger¹⁹, R. Hennings-Yeomans^{4,5}, H. Z. Huang²⁰, R. Kadel²¹, K. Kazkaz²², G. Keppel³, Yu. G. Kolomensky^{4,21}, Y. L. Li¹³, K. E. Lim¹⁹, X. Liu²⁰, Y. G. Ma¹³, C. Maiano^{11,12}, M. Maino^{11,12}, M. Martinez²³, R. H. Maruyama¹⁹, Y. Mei⁵, N. Moggi⁶, S. Morganti⁹, S. Nisi², C. Nones²⁴, E. B. Norman^{22,25}, A. Nucciotti^{11,12}, T. O'Donnell⁴, F. Orio⁹, D. Orlandi², J. L. Ouellet^{4,5}, M. Pallavicini^{10,15}, V. Palimieri³, L. Pattavina², M. Pavan^{11,12}, M. Pedretti²², G. Pessina¹², V. Pettinacci⁹, G. Piperno^{8,9}, S. Pirro², E. Previtali¹², C. Rosenfeld¹, C. Rusconi¹², E. Sala^{11,12}, S. Sangiorgio²², N. D. Scielzo²², M. Sisti^{11,12}, A. R. Smith²⁶, L. Taffarello²⁷, M. Tenconi¹⁶, F. Terranova^{11,12}, W. D. Tian¹³, C. Tomei⁹, S. Trentalange²⁰, G. Ventura^{28,29}, M. Vignati⁹, B. S. Wang^{22,25}, H. W. Wang¹³, L. Wielgus¹⁴, J. Wilson¹, L. A. Winslow²⁰, T. Wise^{14,19}, L. Zanotti^{11,12}, C. Zarra², B. X. Zhu²⁰, S. Zucchelli^{6,30}

- ² INFN-Laboratori Nazionali del Gran Sasso, Assergi, 67010 L'Aquila, Italy
- ³ INFN-Laboratori Nazionali di Legnaro, Legnaro, 35020 Padua, Italy
- ⁴ Department of Physics, University of California, Berkeley, CA 94720, USA
- ⁵ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ⁶ INFN-Sezione di Bologna, 40127 Bologna, Italy
- ⁷ Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ⁸ Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- ⁹ INFN-Sezione di Roma, 00185 Rome, Italy
- ¹⁰ INFN-Sezione di Genova, 16146 Genoa, Italy
- ¹¹ Dipartimento di Fisica, Università di Milano-Bicocca, 20126 Milan, Italy
- ¹² INFN-Sezione di Milano Bicocca, 20126 Milan, Italy
- ¹³ Shanghai Institute of Applied Physics (Chinese Academy of Sciences), Shanghai 201800, China
- ¹⁴ Department of Physics, University of Wisconsin, Madison, WI 53706, USA
- ¹⁵ Dipartimento di Fisica, Università di Genova, 16146 Genoa, Italy
- ¹⁶ Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91405 Orsay Campus, France
- ¹⁷ Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
 ¹⁸ Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- ¹⁹ Department of Physics, Yale University, New Haven, CT 06520, USA
- ²⁰ Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
- ²¹ Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ²² Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- ²³ Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, 50009 Saragossa, Spain
- ²⁴ Service de Physique des Particules, CEA/Saclay, 91191 Gif-sur-Yvette, France
- ²⁵ Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
- ²⁶ EH&S Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ²⁷ INFN-Sezione di Padova, 35131 Padua, Italy
- ²⁸ Dipartimento di Fisica, Università di Firenze, 50125 Florence, Italy
- ²⁹ INFN-Sezione di Firenze, 50125 Florence, Italy ³⁰ Diportimonto di Firenze, Università di Dula

³⁰ Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy

Received: 11 February 2014 / Accepted: 3 July 2014 / Published online: 1 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Fig. 2: CUORE-0 calibration (top panel) and background spectrum (bottom panel) over the data taking period presented in this work. γ -ray peaks from known radioactive sources in the background spectrum are labeled as follows: (1) e^+e^- annihilation; (2) 214 Bi; (3) 40 K; (4) 208 Tl; (5) 60 Co; and (6) 228 Ac.

Look for CUORE-0 unblinded results and $0\nu\beta\beta$ limit this spring!

Backgrounds

- 6-fold reduction in α-dominated background moving from Cuoricino to CUORE-0 from improved cleaning and assembly procedures
- 2.5-fold reduction of background in 0vββ region from stringent radon control in COURE-0

	0νββ region [c/keV/kg/yr]	2700 – 3900 keV [c/keV/kg/yr]
Cuoricino	0.153 ± 0.006	0.110 ± 0.001
CUORE-0	0.063 ± 0.006	0.020 ± 0.001
CUORE	0.01 (projected)	

Resolution

- ²⁰⁸Tl line (2615 keV) is used to estimate energy resolution at 0vββ
 Q-value (2527 keV)
- Design goal of 5 keV FWHM for CUORE-0 and CUORE exceeded

Sensitivity

- CUORE $T_{1/2}^{0\nu\beta\beta}$ sensitivity goal: 9.5 × 10²⁵ y @ 90% C.L.
- Effective Majorana mass: **51 133 meV** @ 90% C.L.
- Assumptions: 5 keV FWHM resolution in 0vββ region, background rate of 0.01 cts/keV/kg/yr, 5 years of live time

Tower construction

- Construction of all 19 CUORE towers is complete
- Towers are stored under nitrogen to avoid radon contamination

Cryostat commissioning

- CUORE Cryostat has reached stable base temperature of 5.9 mK in test runs
- Mini-tower successfully operated in cryostat to test wiring and electronics
- Final preparations are underway for full detector installation this summer

Cryostat vessel flanges

Dilution unit test stand Dilution unit installed in cryostat

Upcoming steps

Spring 2015: Full installation and commissioning of all cryostat components without detectors

Summer 2015: Detector installation in radon-suppressed clean room

Fall 2015: Cryostat and detector characterization and commissioning

Early 2016: First physics data from CUORE

Prospects

- Observation of 0vββ would unambiguously establish the Majorana nature of the neutrino and the existence of lepton number violation,
- The $0\nu\beta\beta$ half-life is also a window into the absolute neutrino mass scale
- CUORE will have a 90% C.L. sensitivity to a $0\nu\beta\beta$ half-life of 9.5 × 10^{25} y, almost two orders of magnitude better than the current limit
- This corresponds to an effective Majorana neutrino mass sensitivity of 51 – 133 meV

