

Results from CUORE-0, Status of CUORE

Reina Maruyama

Yale University

BLV 2015

International Workshop on Baryon and Lepton Number Violation University of Massachusetts, Amherst April 26 - 30, 2015

CUORE Bolometer

TeO₂ Bolometer: Source = Detector

main candidate isotope: ¹³⁰Te Q-value: 2530 keV Isotopic abundance: 34%

For E = 1 MeV: $\Delta T = E/C \approx 0.1 \text{ mK}$ Signal size: 1 mV

Time constant: $\tau = C/G = 0.5 s$ Energy resolution: ~ 5-10 keV at 2.5 MeV

Search for $0\nu\beta\beta$ in ¹³⁰Te

Experimental Signature of 0vββ

- peak at the transition Q-value
- enlarged by detector resolution
- over unavoidable $2\nu\beta\beta$ background

The CUORE 0vββ Search

CUORE at LNGS

Gran Sasso National Laboratory

Average depth ~ 3600 m.w.e. μ : 3 x 10⁻⁸ μ /s/cm² n < 10 MeV: 4 x 10⁻⁶ n/s/cm² γ < 3 MeV: 0.73 γ /s/cm²

CUORE

Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals run as a bolometer array
 - 5x5x5 cm³ crystal, 750 g each
 - 19 Towers; 13 floors; 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10²⁷ ¹³⁰Te nuclei

- Excellent energy resolution of bolometers
- New pulse tube dilution refrigerator and cryostat
- Radio-pure material and clean assembly to achieve low background at region of interest (ROI)

Detector Towers

Assembly of all 19+ towers is complete!

CUORE Cryostat

CUORE Cryogenic Systems & Commissioning

Phased Commissioning

Phase I: 4K system check

- Outer/Inner vacuum chamber test
- Cryogenic verification of detector calibration system
- Commissioning test of DU

Phase II: full cryostat vessel check

- Full assembly of cryostat
- Cool down of cryostat
- Integration of test tower
- Detector wiring
- calibration system

Preparing for Phase III: integrated cryogenic test

- with lead shields
- wiring
- full calibration system

6mK stable base temperature achieved in October 2014

The CUORE 0vββ Search

CUORE-0

first tower of CUORE installed in Cuoricino cryostat

PURPOSE

validate cleaning and assembly procedures for CUORE

TeO2 crystal contaminations Cu holder surface contamination

stand-alone 0vββ experiment phase I data *EPJC 74. 2956 (2014)* Today's result: arXiv:1504.0245

52 TeO₂ crystals

~ 11 kg of ¹³⁰Te

39 kg TeO₂

CUORE-like Detector Assembly

Lowering Background: Crystals & Copper

Ultra-pure TeO2 crystal array

Bulk activity 90% C.L. upper limits: 8.4 · 10⁻⁷ Bq/kg (²³²Th), 6.7 · 10⁻⁷ Bq/kg (²³⁸U), 3.3 · 10⁻⁶ Bq/kg (²¹⁰Po) **Surface activity** 90% C.L. upper limits:

2 · 10⁻⁹ Bq/cm² (²³²Th), 1 · 10⁻⁸ Bq/cm² (²³⁸U), 1 · 10⁻⁶ Bq/cm² (²¹⁰Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching

- Residual ^{232}Th / ^{238}U surface contamination of Cu: $<7\cdot10^{\text{-8}}$ Bq/cm²
- Validated by CUORE-0
- All parts stored underground, under nitrogen after cleaning

Т2

т1

Tower Installation

Built in CUORE Cleanroom, transported to Cuoricino cleanroom

Data Run: 2013 – 2015

Calibration data

Calibration

Energy Resolution

 $T_{1/2}^{0\nu}$ sensitivity $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$

- Energy resolution is evaluated for each bolometer and dataset by fitting the 2615 keV peak from ²⁰⁸Tl in the calibration data.
- The obtained resolution is < 5 keV, which is the CUORE goal.

Energy spectra and Peak Residuals

- Two outliers are:
 - 60
 - Co, which reconstruct at 2507±0.6 keV, 2.0±0.6 keV higher than the nominal value
 208
 - TI single-escape line, which reconstruct 0.84±0.22 w.r.t the nominal value at 2103.51 keV.
- Double escape from TI-208 at 1592 keV in line with other peaks.

- We determined a global calibration offset function, by performing a parabolic fit to the peak residual (excluding the two outliers).
- We take the standard deviation of the fit residuals (0.12 keV) as a global systematic uncertainty on the reconstructed energy.

CUORE-0 Background Measurement

- γ background (from ²³²Th) was • not reduced since the cryostat remained the same.
- γ background (from ²³⁸U chain) was reduced by a factor of 2.5 due to better radon control.
- a background from copper surface and crystal surface was reduced by a factor of 6.5 thanks to the new detector surface treatment.
- Demonstrate CUORE • sensitivity goal is within reach. Background paper

in preparation!

Background Rate & Reduction

	Background rate [counts/keV/kg/y]		signal eff. [%]
	0vββ region	a region (excl. peak)	(detector+cuts)
Cuoricino	0.169 ± 0.006	0.110 ± 0.001	82.8±1.1
CUORE-0	0.058 ± 0.011	0.016 ± 0.001	81.3±0.6

Blind Analysis

 Region of Interest was blinded by "salting": A small (and *blinded*) fraction of the events within ±10 keV in ²⁰⁸Tl photopeak are exchanged with events within ±10 keV of the 0vββ Q-value to produce a *fake* peak.

cnts/keV

Unblinded Spectrum & Fit

- Simultaneous unbinned extended ML fit to range [2470,2570] keV
- Fit function has 3 components:
 - Calibration-derived lineshape modeling posited fixed at 2527.5 keV
 - Calibration-derived lineshape modeling Co peak floated around 2505 keV
 - Continuum background

Unblinded Spectrum & Fit

Fitted background: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) counts/keV/kg/yr Best-fit decay rate: $\Gamma^{0\nu\beta\beta}$ (¹³⁰Te) = 0.01 ± 0.12 (stat.) ± 0.01 (syst.) × 10⁻²⁴ yr⁻¹

Unblinded Spectrum & Fit

 $T_{1/2^{0\nu\beta\beta}}(^{130}\text{Te}) > 2.7 \times 10^{24} \text{ yr} (90\% \text{ C.L., statistics only})$

arXiv:1504.02454 Submitted to PRL

 $T_{1/2^{0\nu\beta\beta}}(^{130}\text{Te}) > 4.0 \times 10^{24} \text{ yr} (90\% \text{ C.L., stat.+sys.})$

Limits on Effective Majorana Mass

2) QRPA (PRC 87, 045501 (2013)) 3) pnQRPA (PRC 024613 (2015) 4) ISM (NPA 818, 139 (2009)) 5) EDF (PRL 105, 252503 (2010))

Including additional Shell-Model NME

 $\langle \mathbf{m}_{\beta\beta} \rangle < 270 - 760 \text{ meV}$

1) IBM-2 (PRC 91, 034304 (2015)) 2) QRPA (PRC 87, 045501 (2013)) 3) pnQRPA (PRC 024613 (2015) 4) Shell Model (PRC 91, 024309 (2015)) 5) ISM (NPA 818, 139 (2009)) 6) EDF (PRL 105, 252503 (2010))

Projected CUORE Background

- CUORE-0 provides bench mark for remaining background with new assembly & crystal/Cu cleaning protocols
- CUORE results of CUORE-0 + screening campaign results -> CUORE MC

Conservatively extrapolate measured α -region bkg from CUORE-0 assuming all bkg is from ²³⁸U/²³²Th/²¹⁰Po individually

CUORE Sensitivity

- CUORE sensitivity goal:
 - $T_{1/2}^{0\nu\beta\beta}$ > 9.5 x 10²⁵ yr @ 90% C.L.
- Effective Majorana mass 51 133 meV @ 90% C.L.
 - Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/(keV·kg·yr), 5 years of live time.

arXiv:1109.0494

Beyond CUORE: 130Te Enrichment

 $m_{\beta\beta} \sim$

Detection efficiency

Isotopic abundance

 F_N

3

η

M

Enrichment

- Natural next step for CUORE
 - -Increase # of parent nuclei, not the detector mass (# of background events)
 - ¹³⁰Te enrichment is relatively cheap at \$17K/kg
 - Compared to ⁷⁶Ge enrichment at \$100k/kg
- 500 gram of enriched ¹³⁰Te metal is sent to SICCAS for ٠ enriched crystal growth.

R&D for Future Bolometric 0vßß Searches

Increase mass enrich in ¹³⁰Te Reduce background

via particle ID cleaner detectors, tag backgrounds, active veto

Explore other/multiple isotopes

Bolometer R&D:

- CALDER
- Cherenkov/TeO2
- LUCIFER
- LUMINEU

180

Beyond CUORE: Particle ID with Light Detectors

phonon+photon

- Cherenkov light or scintillation to distinguish α from β/γ (¹³⁰TeO₂, Zn⁸²Se, ¹¹⁶CdWO₄, and Zn¹⁰⁰MoO₄)
- More rejection power needed: 99.9% α background suppression. Light detector R&D for better resolution.
- Background free search.

$$m_{\beta\beta} \sim (M \cdot t)^{-1/2}$$
, not $(M \cdot t)^{-1/4}$

Conclusions

Neutrinoless double beta ($0\nu\beta\beta$) is the only method for probing the Majorana nature neutrinos. Observation would establish lepton number violation and physics beyond Standard Model.

CUORE program builds on the success of CUORICINO and predecessors

- CUORE-0 (2013 2015)
 - confirms successful background mitigation and Cuoricino background model
 - energy resolution of < 5 keV FWHM for ROI reached
 - provides the most sensitive limit for $(0\nu\beta\beta)$ in ¹³⁰Te to date.

· CUORE

- tower assembly is complete and cryogenic system commissioning underway.
- Start operation in late 2015.
- with 206 kg of ¹³⁰Te and 5 keV energy resolution, is able to reach 51-133 meV effective Majorana mass.
- Beyond CUORE: R&D effort is underway. Large bolometers offer path towards exploring the inverted hierarchy.

Stay tuned!